Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Exp Dermatol ; 33(5): e15087, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685821

RESUMO

Hidradenitis Suppurativa (HS) is a chronic autoinflammatory skin disease with activated keratinocytes, tunnel formation and a complex immune infiltrate in tissue. The HS microbiome is polymicrobial with an abundance of commensal gram-positive facultative (GPs) Staphylococcus species and gram-negative anaerobic (GNA) bacteria like Prevotella, Fusobacterium and Porphyromonas with increasing predominance of GNAs with disease severity. We sought to define the keratinocyte response to bacteria commonly isolated from HS lesions to probe pathogenic relationships between HS and the microbiome. Type strains of Prevotella nigrescens, Prevotella melaninogenica, Prevotella intermedia, Prevotella asaccharolytica, Fusobacterium nucleatum, as well as Staphylococcus aureus and the normal skin commensal Staphylococcus epidermidis were heat-killed and co-incubated with normal human keratinocytes. RNA was collected and analysed using RNAseq and RT-qPCR. The supernatant was collected from cell culture for protein quantification. Transcriptomic profiles between HS clinical samples and stimulated keratinocytes were compared. Co-staining of patient HS frozen sections was used to localize bacteria in lesions. A mouse intradermal injection model was used to investigate early immune recruitment. TLR4 and JAK inhibitors were used to investigate mechanistic avenues of bacterial response inhibition. GNAs, especially F. nucleatum, stimulated vastly higher CXCL8, IL17C, CCL20, IL6, TNF and IL36γ transcription in normal skin keratinocytes than the GPs S. epidermidis and S. aureus. Using RNAseq, we found that F. nucleatum (and Prevotella) strongly induced the IL-17 pathway in keratinocytes and overlapped with transcriptome profiles of HS patient clinical samples. Bacteria were juxtaposed to activated keratinocytes in vivo, and F. nucleatum strongly recruited murine neutrophil and macrophage migration. Both the TLR4 and pan-JAK inhibitors reduced cytokine production. Detailed transcriptomic profiling of healthy skin keratinocytes exposed to GNAs prevalent in HS revealed a potent, extensive inflammatory response vastly stronger than GPs. GNAs stimulated HS-relevant genes, including many genes in the IL-17 response pathway, and were significantly associated with HS tissue transcriptomes. The close association of activated keratinocytes with bacteria in HS lesions and innate infiltration in murine skin cemented GNA pathogenic potential. These novel mechanistic insights could drive future targeted therapies.


Assuntos
Hidradenite Supurativa , Queratinócitos , Queratinócitos/imunologia , Queratinócitos/microbiologia , Queratinócitos/metabolismo , Humanos , Animais , Camundongos , Hidradenite Supurativa/microbiologia , Hidradenite Supurativa/imunologia , Staphylococcus aureus/imunologia , Staphylococcus epidermidis/imunologia , Fusobacterium nucleatum/imunologia , Transcriptoma , Citocinas/metabolismo , Bactérias Anaeróbias , Interleucina-17/metabolismo , Microbiota , Prevotella/imunologia
2.
Front Immunol ; 15: 1330253, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410519

RESUMO

Recognizing the "essential" factors that contribute to a clinical outcome is critical for designing appropriate therapies and prioritizing limited medical resources. Demonstrating a high correlation between a factor and an outcome does not necessarily imply an essential role of the factor to the outcome. Human protective adaptive immune responses to pathogens vary among (and perhaps within) pathogenic strains, human individual hosts, and in response to other factors. Which of these has an "essential" role? We offer three statistical approaches that predict the presence of newly contributing factor(s) and then quantify the influence of host, pathogen, and the new factors on immune responses. We illustrate these approaches using previous data from the protective adaptive immune response (cellular and humoral) by human hosts to various strains of the same pathogenic bacterial species. Taylor's law predicts the existence of other factors potentially contributing to the human protective adaptive immune response in addition to inter-individual host and intra-bacterial species inter-strain variability. A mixed linear model measures the relative contribution of the known variables, individual human hosts and bacterial strains, and estimates the summed contributions of the newly predicted but unknown factors to the combined adaptive immune response. A principal component analysis predicts the presence of sub-variables (currently not defined) within bacterial strains and individuals that may contribute to the combined immune response. These observations have statistical, biological, clinical, and therapeutic implications.


Assuntos
Imunidade Adaptativa , Interações Hospedeiro-Patógeno , Humanos
3.
Toxins (Basel) ; 15(7)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37505692

RESUMO

Clostridium perfringens epsilon toxin (ETX) is the third most lethal bacterial toxin and has been suggested to be an environmental trigger of multiple sclerosis, an immune-mediated disease of the human central nervous system. However, ETX cytotoxicity on primary human cells has not been investigated. In this article, we demonstrate that ETX preferentially binds to and kills human lymphocytes expressing increased levels of the myelin and lymphocyte protein MAL. Using flow cytometry, ETX binding was determined to be time and dose dependent and was highest for CD4+ cells, followed by CD8+ and then CD19+ cells. Similar results were seen with ETX-induced cytotoxicity. To determine if ETX preference for CD4+ cells was related to MAL expression, MAL gene expression was determined by RT-qPCR. CD4+ cells had the highest amount of Mal gene expression followed by CD8+ and CD19+ cells. These data indicate that primary human cells are susceptible to ETX and support the hypothesis that MAL is a main receptor for ETX. Interestingly, ETX bindings to human lymphocytes suggest that ETX may influence immune response in multiple sclerosis.


Assuntos
Toxinas Bacterianas , Esclerose Múltipla , Humanos , Clostridium perfringens/metabolismo , Linfócitos , Sistema Nervoso Central , Toxinas Bacterianas/metabolismo
4.
mSphere ; 8(4): e0004423, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37273201

RESUMO

Bacteriophage lytic enzymes (i.e., phage lysins) are a trending alternative for general antibiotics to combat growing antimicrobial resistance. Gram-positive Bacillus cereus causes one of the most severe forms of intraocular infection, often resulting in complete vision loss. It is an inherently ß-lactamase-resistant organism that is highly inflammogenic in the eye, and antibiotics are not often beneficial as the sole therapeutic option for these blinding infections. The use of phage lysins as a treatment for B. cereus ocular infection has never been tested or reported. In this study, the phage lysin PlyB was tested in vitro, demonstrating rapid killing of vegetative B. cereus but not its spores. PlyB was also highly group specific and effectively killed the bacteria in various bacterial growth conditions, including ex vivo rabbit vitreous (Vit). Furthermore, PlyB demonstrated no cytotoxic or hemolytic activity toward human retinal cells or erythrocytes and did not trigger innate activation. In in vivo therapeutic experiments, PlyB was effective in killing B. cereus when administered intravitreally in an experimental endophthalmitis model and topically in an experimental keratitis model. In both models of ocular infection, the effective bactericidal property of PlyB prevented pathological damage to ocular tissues. Thus, PlyB was found to be safe and effective in killing B. cereus in the eye, greatly improving an otherwise devastating outcome. Overall, this study demonstrates that PlyB is a promising therapeutic option for B. cereus eye infections.IMPORTANCEEye infections from antibiotic-resistant Bacillus cereus are devastating and can result in blindness with few available treatment options. Bacteriophage lysins are an alternative to conventional antibiotics with the potential to control antibiotic-resistant bacteria. This study demonstrates that a lysin called PlyB can effectively kill B. cereus in two models of B. cereus eye infections, thus treating and preventing the blinding effects of these infections.


Assuntos
Fagos Bacilares , Bacillus , Endoftalmite , Infecções Oculares Bacterianas , Animais , Humanos , Coelhos , Infecções Oculares Bacterianas/tratamento farmacológico , Endoftalmite/tratamento farmacológico , Endoftalmite/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
5.
Antimicrob Agents Chemother ; 67(5): e0151922, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37098944

RESUMO

Klebsiella pneumoniae and Pseudomonas aeruginosa are two leading causes of burn and wound infections, pneumonia, urinary tract infections, and more severe invasive diseases, which are often multidrug resistant (MDR) or extensively drug resistant. Due to this, it is critical to discover alternative antimicrobials, such as bacteriophage lysins, against these pathogens. Unfortunately, most lysins that target Gram-negative bacteria require additional modifications or outer membrane permeabilizing agents to be bactericidal. We identified four putative lysins through bioinformatic analysis of Pseudomonas and Klebsiella phage genomes in the NCBI database and then expressed and tested their intrinsic lytic activity in vitro. The most active lysin, PlyKp104, exhibited >5-log killing against K. pneumoniae, P. aeruginosa, and other Gram-negative representatives of the multidrug-resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, K. pneumonia, Acinetobacter baumannii, P. aeruginosa, and Enterobacter species) without further modification. PlyKp104 displayed rapid killing and high activity over a wide pH range and in high concentrations of salt and urea. Additionally, pulmonary surfactants and low concentrations of human serum did not inhibit PlyKp104 activity in vitro. PlyKp104 also significantly reduced drug-resistant K. pneumoniae >2 logs in a murine skin infection model after one treatment of the wound, suggesting that this lysin could be used as a topical antimicrobial against K. pneumoniae and other MDR Gram-negative infections.


Assuntos
Anti-Infecciosos , Bacteriófagos , Humanos , Animais , Camundongos , Pseudomonas aeruginosa , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Bactérias Gram-Negativas
6.
J Clin Invest ; 133(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36853799

RESUMO

Multiple sclerosis (MS) is a complex disease of the CNS thought to require an environmental trigger. Gut dysbiosis is common in MS, but specific causative species are unknown. To address this knowledge gap, we used sensitive and quantitative PCR detection to show that people with MS were more likely to harbor and show a greater abundance of epsilon toxin-producing (ETX-producing) strains of C. perfringens within their gut microbiomes compared with individuals who are healthy controls (HCs). Isolates derived from patients with MS produced functional ETX and had a genetic architecture typical of highly conjugative plasmids. In the active immunization model of experimental autoimmune encephalomyelitis (EAE), where pertussis toxin (PTX) is used to overcome CNS immune privilege, ETX can substitute for PTX. In contrast to PTX-induced EAE, where inflammatory demyelination is largely restricted to the spinal cord, ETX-induced EAE caused demyelination in the corpus callosum, thalamus, cerebellum, brainstem, and spinal cord, more akin to the neuroanatomical lesion distribution seen in MS. CNS endothelial cell transcriptional profiles revealed ETX-induced genes that are known to play a role in overcoming CNS immune privilege. Together, these findings suggest that ETX-producing C. perfringens strains are biologically plausible pathogens in MS that trigger inflammatory demyelination in the context of circulating myelin autoreactive lymphocytes.


Assuntos
Encefalomielite Autoimune Experimental , Microbioma Gastrointestinal , Esclerose Múltipla , Animais , Humanos , Clostridium perfringens/genética , Esclerose Múltipla/genética , Privilégio Imunológico , Linfócitos
7.
J Control Release ; 353: 634-649, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464065

RESUMO

Intestinal flora regulation is an effective method to intervene and treat diseases associated with microbiome imbalance. In addition to conventional probiotic supplement, phage delivery has recently exhibited great prospect in modifying gut flora composition and regulating certain gene expression of gut bacteria. However, the protein structure of phage is vulnerable to external factors during storage and delivery, which leads to the loss of infection ability and flora regulation function. Encapsulation strategy provides an effective solution for improving phage stability and precisely controlling delivery dosage. Different functional materials including enzyme-responsive and pH-responsive polymers have been used to construct encapsulation carriers to protect phages from harsh conditions and release them in the colon. Meanwhile, diverse carriers showed different characteristics in structure and function, which influenced their protective effect and delivery efficiency. This review systematically summarizes recent research progress on the phage encapsulation and delivery, with an emphasis on function properties of carrier systems in the protection effect and colon-targeted delivery. The present review may provide a theoretical reference for the encapsulation and delivery of phage as microbiota modulator, so as to expedite the development of functional material and delivery carrier, as well as the advances in practical application of intestinal flora regulation.


Assuntos
Bacteriófagos , Microbioma Gastrointestinal , Preparações Farmacêuticas , Proteínas , Bactérias
8.
Front Microbiol ; 13: 905670, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685926

RESUMO

The proteolytic activity of human plasmin (hPm) is utilized by various cells to provide a surface protease that increases the potential of cells to migrate and disseminate. Skin-trophic Pattern D strains of Streptococcus pyogenes (GAS), e.g., GAS isolate AP53, contain a surface M-protein (PAM) that directly and strongly interacts (Kd ~ 1 nM) with human host plasminogen (hPg), after which it is activated to hPm by a specific coinherited bacterial activator, streptokinase (SK2b), or by host activators. Another ubiquitous class of hPg binding proteins on GAS cells includes "moonlighting" proteins, such as the glycolytic enzyme, enolase (Sen). However, the importance of Sen in hPg acquisition, especially when PAM is present, has not been fully developed. Sen forms a complex with hPg on different surfaces, but not in solution. Isogenic AP53 cells with a targeted deletion of PAM do not bind hPg, but the surface expression of Sen is also greatly diminished upon deletion of the PAM gene, thus confounding this approach for defining the role of Sen. However, cells with point deletions in PAM that negate hPg binding, but fully express PAM and Sen, show that hPg binds weakly to Sen on GAS cells. Despite this, Sen does not stimulate hPg activation by SK2b, but does stimulate tissue-type plasminogen activator-catalyzed activation of hPg. These data demonstrate that PAM plays the dominant role as a functional hPg receptor in GAS cells that also contain surface enolase.

9.
Front Microbiol ; 13: 817228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369520

RESUMO

Most skin infections, including those complicating burns, are polymicrobial involving multiple causative bacteria. Add to this the fact that many of these organisms may be antibiotic-resistant, and a simple skin lesion or burn could soon become life-threatening. Membrane-acting cationic peptides from Gram-negative bacteriophage lysins can potentially aid in addressing the urgent need for alternative therapeutics. Such peptides natively constitute an amphipathic region within the structural composition of these lysins and function to permit outer membrane permeabilization in Gram-negative bacteria when added externally. This consequently allows the lysin to access and degrade the peptidoglycan substrate, resulting in rapid hypotonic lysis and bacterial death. When separated from the lysin, some of these cationic peptides kill sensitive bacteria more effectively than the native molecule via both outer and cytoplasmic membrane disruption. In this study, we evaluated the antibacterial properties of a modified cationic peptide from the broad-acting lysin PlyPa01. The peptide, termed PaP1, exhibited potent in vitro bactericidal activity toward numerous high priority Gram-positive and Gram-negative pathogens, including all the antibiotic-resistant ESKAPE pathogens. Both planktonic and biofilm-state bacteria were sensitive to the peptide, and results from time-kill assays revealed PaP1 kills bacteria on contact. The peptide was bactericidal over a wide temperature and pH range and could withstand autoclaving without loss of activity. However, high salt concentrations and complex matrices were found to be largely inhibitory, limiting its use to topical applications. Importantly, unlike other membrane-acting antimicrobials, PaP1 lacked cytotoxicity toward human cells. Results from a murine burn wound infection model using methicillin-resistant Staphylococcus aureus or multidrug-resistant Pseudomonas aeruginosa validated the in vivo antibacterial efficacy of PaP1. In these studies, the peptide enhanced the potency of topical antibiotics used clinically for treating chronic wound infections. Despite the necessity for additional preclinical drug development, the collective data from our study support PaP1 as a potential broad-spectrum monotherapy or adjunctive therapy for the topical treatment of polymicrobial infections and provide a foundation for engineering future lysin-derived peptides with improved antibacterial properties.

10.
J Biol Chem ; 298(6): 101940, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35430253

RESUMO

Trafficking of M-protein (Mprt) from the cytosol of Group A Streptococcus pyogenes (GAS) occurs via Sec translocase membrane channels that associate with Sortase A (SrtA), an enzyme that catalyzes cleavage of Mprt at the proximal C-terminal [-LPST355∗GEAA-] motif and subsequent transpeptidation of the Mprt-containing product to the cell wall (CW). These steps facilitate stable exposure of the N-terminus of Mprt to the extracellular milieu where it interacts with ligands. Previously, we found that inactivation of SrtA in GAS cells eliminated Mprt CW transpeptidation but effected little reduction in its cell surface exposure, indicating that the C-terminus of Mprt retained in the cytoplasmic membrane (CM) extends its N-terminus to the cell surface. Herein, we assessed the effects of mutating the Thr355 residue in the WT SrtA consensus sequence (LPST355∗GEAA-) in a specific Mprt, PAM. In vitro, we found that synthetic peptides with mutations (LPSX355GEAA) in the SrtA cleavage site displayed slower cleavage activities with rSrtA than the WT peptide. Aromatic residues at X had the lowest activities. Nonetheless, PAM/[Y355G] still transpeptidated the CW in vivo. However, when using isolated CMs from srtA-inactivated GAS cells, rapid cleavage of PAM/[LPSY355GEAA] occurred at E357∗ but transpeptidation did not take place. These results show that another CM-resident enzyme nonproductively cleaved PAM/[LPSYGE357∗AA]. However, SrtA associated with the translocon channel in vivo cleaved and transpeptidated PAM/[LPSX355∗GEAA] variants. These CM features allow diverse cleavage site variants to covalently attach to the CW despite the presence of other potent nonproductive CM proteases.


Assuntos
Aminoaciltransferases , Proteínas de Bactérias , Parede Celular , Streptococcus pyogenes , Aminoaciltransferases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Biológica , Parede Celular/metabolismo , Cisteína Endopeptidases , Mutação , Streptococcus pyogenes/classificação , Streptococcus pyogenes/enzimologia
11.
Nat Microbiol ; 6(12): 1516-1525, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34819640

RESUMO

CRISPR loci are composed of short DNA repeats separated by sequences, known as spacers, that match the genomes of invaders such as phages and plasmids. Spacers are transcribed and processed to generate RNA guides used by CRISPR-associated nucleases to recognize and destroy the complementary nucleic acids of invaders. To counteract this defence, phages can produce small proteins that inhibit these nucleases, termed anti-CRISPRs (Acrs). Here we demonstrate that the ΦAP1.1 temperate phage utilizes an alternative approach to antagonize the type II-A CRISPR response in Streptococcus pyogenes. Immediately after infection, this phage expresses a small anti-CRISPR protein, AcrIIA23, that prevents Cas9 function, allowing ΦAP1.1 to integrate into the direct repeats of the CRISPR locus, neutralizing immunity. However, acrIIA23 is not transcribed during lysogeny and phage integration/excision cycles can result in the deletion and/or transduction of spacers, enabling a complex modulation of the type II-A CRISPR immune response. A bioinformatic search identified prophages integrated not only in the CRISPR repeats, but also the cas genes, of diverse bacterial species, suggesting that prophage disruption of the CRISPR-cas locus is a recurrent mechanism to counteract immunity.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Prófagos/fisiologia , Fagos de Streptococcus/fisiologia , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/virologia , Lisogenia , Plasmídeos/genética , Plasmídeos/metabolismo , Prófagos/genética , Fagos de Streptococcus/genética , Streptococcus pyogenes/genética , Integração Viral
14.
Biochem J ; 478(12): 2385-2397, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34096588

RESUMO

Endolysins are peptidoglycan (PG) hydrolases that function as part of the bacteriophage (phage) lytic system to release progeny phage at the end of a replication cycle. Notably, endolysins alone can produce lysis without phage infection, which offers an attractive alternative to traditional antibiotics. Endolysins from phage that infect Gram-positive bacterial hosts contain at least one enzymatically active domain (EAD) responsible for hydrolysis of PG bonds and a cell wall binding domain (CBD) that binds a cell wall epitope, such as a surface carbohydrate, providing some degree of specificity for the endolysin. Whilst the EADs typically cluster into conserved mechanistic classes with well-defined active sites, relatively little is known about the nature of the CBDs and only a few binding epitopes for CBDs have been elucidated. The major cell wall components of many streptococci are the polysaccharides that contain the polyrhamnose (pRha) backbone modified with species-specific and serotype-specific glycosyl side chains. In this report, using molecular genetics, microscopy, flow cytometry and lytic activity assays, we demonstrate the interaction of PlyCB, the CBD subunit of the streptococcal PlyC endolysin, with the pRha backbone of the cell wall polysaccharides, Group A Carbohydrate (GAC) and serotype c-specific carbohydrate (SCC) expressed by the Group A Streptococcus and Streptococcus mutans, respectively.


Assuntos
Bacteriófagos/fisiologia , Carboidratos/fisiologia , Enzimas/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano/metabolismo , Streptococcus pyogenes/metabolismo , Proteínas Virais/metabolismo , Carboidratos/química , Domínio Catalítico , Parede Celular/química , Parede Celular/metabolismo , Enzimas/genética , Hidrólise , N-Acetil-Muramil-L-Alanina Amidase/genética , Conformação Proteica , Streptococcus pyogenes/genética , Streptococcus pyogenes/crescimento & desenvolvimento , Proteínas Virais/genética
15.
EMBO Mol Med ; 13(7): e13810, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34137500

RESUMO

Streptococcus suis, a ubiquitous bacterial colonizer in pigs, has recently extended host range to humans, leading to a global surge of deadly human infections and three large outbreaks since 1998. To better understand the mechanisms for the emergence of cross-species transmission and virulence in human, we have sequenced 366 S. suis human and pig isolates from 2005 to 2016 and performed a large-scale phylogenomic analysis on 1,634 isolates from 14 countries over 36 years. We show the formation of a novel human-associated clade (HAC) diversified from swine S. suis isolates. Phylogeographic analysis identified Europe as the origin of HAC, coinciding with the exportation of European swine breeds between 1960s and 1970s. HAC is composed of three sub-lineages and contains several healthy-pig isolates that display high virulence in experimental infections, suggesting healthy-pig carriers as a potential source for human infection. New HAC-specific genes are identified as promising markers for pathogen detection and surveillance. Our discovery of a human-associated S. suis clade provides insights into the evolution of this emerging human pathogen and extend our understanding of S. suis epidemics worldwide.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Animais , Europa (Continente) , Humanos , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/veterinária , Streptococcus suis/genética , Suínos , Doenças dos Suínos/epidemiologia , Virulência
16.
Spine J ; 21(6): 903-914, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33610802

RESUMO

The contribution of bacterial infection to chronic low back pain and its treatment with antibiotics have generated considerable controversy in literature. If efficacious, antibiotics have the potential to transform the treatment of chronic low back pain in a significant subset of patients. Some microbiology studies of disc tissue from patients with CLBP have shown that bacteria are present, most likely due to infection, while others conclude they are absent or if found, it is due to surgical contamination. Clinical studies testing the efficacy of oral antibiotics to treat CLBP have either shown that the treatment is efficacious leading to significantly reduced pain and disability or that their effect is modest and not clinically significant. Critical review of the literature on CLBP, bacterial infection and treatment with antibiotics identified five well-designed and executed microbiology studies characterizing bacteria in disc samples that demonstrate that bacteria do infect herniated disc tissue, but that the bacterial burden is low and may be below the limits of detection in some studies. Two randomized, controlled clinical trials evaluating oral antibiotics in patients with CLBP indicate that for certain subsets of patients, the reduction in pain and disability achieved with antibiotic therapy may be significant. In patients for whom other therapies have failed, and who might otherwise progress to disc replacement or fusion surgery, antibiotic therapy may well be an attractive option to reduce the individual suffering associated with this debilitating condition. Additional clinical research is recommended to refine the selection of patients with CLBP caused or complicated by bacterial infection and most likely to respond to antibiotics, to optimize antibiotic therapy to maximize patient benefit, to minimize and manage side effects, and to address legitimate concerns about antibiotic stewardship.


Assuntos
Infecções Bacterianas , Dor Crônica , Deslocamento do Disco Intervertebral , Dor Lombar , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Humanos , Deslocamento do Disco Intervertebral/tratamento farmacológico , Dor Lombar/tratamento farmacológico , Vértebras Lombares
17.
Int J Food Microbiol ; 341: 109068, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33498009

RESUMO

Raw vegetables are a key food for a healthy diet, but their increased consumption brings a higher risk for foodborne disease. Contamination of salad greens with Shiga toxin-producing Escherichia coli (STEC) O157:H7 has caused severe disease and important economic losses almost yearly in the United States over the last 10 years. To curb the risk of infections from contaminated produce, approaches based on bacterial virus - commonly known as bacteriophage or phage - have recently started to draw interest among other antimicrobial strategies. Phages enter bacterial cells to reproduce and cause cellular lysis to release their phage progeny at the end of their infection cycle. This lytic effect is caused by lysins, phage-encoded enzymes that have evolved to degrade the bacterial cell wall resulting in hypotonic lysis. When applied externally in their purified form, such enzymes are able to kill sensitive bacteria on contact in a similar way. Their unique bactericidal properties have made lysins effective antimicrobial agents in a variety of applications, from treating multidrug-resistant infections in humans to controlling bacterial contamination in several areas, including microbiological food safety. Here we describe a novel lysin, namely PlyEc2, with potent bactericidal activity against key gram-negative pathogens including E. coli, Salmonella, Shigella, Acinetobacter and Pseudomonas. PlyEc2 displayed high bactericidal activity against STEC to a concentration of 12.5 µg/ml under different pH conditions. This lysin was also able to reduce the bacterial titer of several pathogenic strains in vitro by more than 5 logarithmic units, resulting in complete sterilization. Importantly, PlyEc2 proved to be a powerful produce decontamination agent in its ability to clear 99.7% of contaminating STEC O157:H7 in our Romaine lettuce leaf model. PlyEc2 was also able to eradicate 99.8% of the bacteria contaminating the washing solution, drastically reducing the risk of cross-contamination during the washing process. A sensory evaluation panel found that treatment with PlyEc2 did not alter the visual and tactile quality of lettuce leaves compared to the untreated leaves. Our study is the first to describe a highly effective lysin treatment to control gram-negative pathogenic contamination on fresh lettuce without the addition of membrane destabilizing agents.


Assuntos
Antibacterianos/farmacologia , Bacteriófagos/enzimologia , Escherichia coli O157/efeitos dos fármacos , Doenças Transmitidas por Alimentos/prevenção & controle , Lactuca/microbiologia , Bacteriófagos/metabolismo , Contagem de Colônia Microbiana , Descontaminação/métodos , Contaminação de Alimentos/análise , Microbiologia de Alimentos/métodos , Inocuidade dos Alimentos/métodos , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Alimentos Crus/microbiologia
18.
Mol Microbiol ; 114(4): 681-693, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32706915

RESUMO

Bacteria sense and respond to environmental changes via several broad categories of sensory signal transduction systems. Recently, we described the key features of a previously unrecognized, but widely conserved class of prokaryotic sensory system that we refer to as the LytTR Regulatory System (LRS). Our previous studies suggest that most, if not all, prokaryotic LRS membrane proteins serve as inhibitors of their cognate transcription regulators, but the inhibitory mechanisms employed have thus far remained a mystery. Using the Streptococcus mutans HdrRM LRS as a model, we demonstrate how the LRS membrane protein HdrM inhibits its cognate transcription regulator HdrR by tightly sequestering HdrR in a membrane-localized heteromeric HdrR/M complex. Membrane sequestration of HdrR prevents the positive feedback autoregulatory function of HdrR, thereby maintaining a low basal expression of the hdrRM operon. However, this mechanism can be antagonized by ectopically expressing a competitive inhibitor mutant form of HdrR that lacks its DNA binding ability while still retaining its HdrM interaction. Our results indicate that sequestration of HdrR is likely to be the only mechanism required to inhibit its transcription regulator function, suggesting that endogenous activation of the HdrRM LRS is probably achieved through a modulation of the HdrR/M interaction.


Assuntos
Proteínas de Membrana/metabolismo , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Proteínas de Bactérias/metabolismo , Bacteriocinas/biossíntese , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Membrana/genética , Óperon/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Bone Joint J ; 102-B(7_Supple_B): 3-10, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32600192

RESUMO

AIMS: Current treatments of prosthetic joint infection (PJI) are minimally effective against Staphylococcus aureus biofilm. A murine PJI model of debridement, antibiotics, and implant retention (DAIR) was used to test the hypothesis that PlySs2, a bacteriophage-derived lysin, can target S. aureus biofilm and address the unique challenges presented in this periprosthetic environment. METHODS: The ability of PlySs2 and vancomycin to kill biofilm and colony-forming units (CFUs) on orthopaedic implants were compared using in vitro models. An in vivo murine PJI model of DAIR was used to assess the efficacy of a combination of PlySs2 and vancomycin on periprosthetic bacterial load. RESULTS: PlySs2 treatment reduced 99% more CFUs and 75% more biofilm compared with vancomycin in vitro. A combination of PlySs2 and vancomycin in vivo reduced the number of CFUs on the surface of implants by 92% and in the periprosthetic tissue by 88%. CONCLUSION: PlySs2 lysin was able to reduce biofilm, target planktonic bacteria, and work synergistically with vancomycin in our in vitro models. A combination of PlySs2 and vancomycin also reduced bacterial load in periprosthetic tissue and on the surface of implants in a murine model of DAIR treatment for established PJI. Cite this article: Bone Joint J 2020;102-B(7 Supple B):3-10.


Assuntos
Bacteriófagos , Enzimas/farmacologia , Infecções Relacionadas à Prótese/terapia , Infecções Estafilocócicas/terapia , Animais , Antibacterianos/farmacologia , Bacteriólise , Biofilmes , Contagem de Colônia Microbiana , Desbridamento , Modelos Animais de Doenças , Técnicas In Vitro , Camundongos Endogâmicos C57BL , Infecções Relacionadas à Prótese/microbiologia , Vancomicina/farmacologia
20.
Comp Med ; 70(4): 328-335, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32471521

RESUMO

Corynebacterium bovis is the causative agent of Corynebacterium-associated hyperkeratosis in immunocompromised mice. The resulting skin pathology can be profound and can be associated with severe wasting, making the animals unsuitable for research. Although the administration of antibiotics is effective in resolving clinical symptoms, antibiotics do not eradicate the offending bacterium. Furthermore, antibiotic use may be contraindicated as it can affect tumor growth and is associated with Clostridioides difficile enterotoxemia in highly immunocompromised murine strains. Lysins, which are lytic enzymes obtained from bacteriophages, are novel antimicrobial agents for treating bacterial diseases. The advantage of lysins are its target specificity, with minimal off-target complications that could affect the host or the biology of the engrafted tumor. The aim of this study was to identify lysins active against C. bovis. Chemical activation of latent prophages by using mitomycin C in 3 C. bovis isolates did not cause bacteriophage induction as determined through plaque assays and transmission electron microscopy. As an alternative approach, 8 lysins associated with other bacterial species, including those from the closely related species C. falsenii, were tested for their lytic action against C. bovis but were unsuccessful. These findings were congruent with the previously reported genomic analysis of 21 C. bovis isolates, which failed to reveal bacteriophage sequences by using the PHAST and PHASTER web server tools. From these results, we suggest C. bovis is among those rare bacterial species devoid of lysogenic bacteriophages, thus making the identification of C. bovis-specific lysins more challenging. However, C. bovis may be a useful model organism for studying the effects of antiphage systems.


Assuntos
Antibacterianos/farmacocinética , Bacteriófagos/efeitos dos fármacos , Corynebacterium/virologia , Animais , Infecções por Corynebacterium/tratamento farmacológico , Hospedeiro Imunocomprometido , Camundongos , Doenças dos Roedores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...