Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 448(7157): 1054-7, 2007 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-17728758

RESUMO

There are five known taste modalities in humans: sweet, bitter, sour, salty and umami (the taste of monosodium glutamate). Although the fruitfly Drosophila melanogaster tastes sugars, salts and noxious chemicals, the nature and number of taste modalities in this organism is not clear. Previous studies have identified one taste cell population marked by the gustatory receptor gene Gr5a that detects sugars, and a second population marked by Gr66a that detects bitter compounds. Here we identify a novel taste modality in this insect: the taste of carbonated water. We use a combination of anatomical, calcium imaging and behavioural approaches to identify a population of taste neurons that detects CO2 and mediates taste acceptance behaviour. The taste of carbonation may allow Drosophila to detect and obtain nutrients from growing microorganisms. Whereas CO2 detection by the olfactory system mediates avoidance, CO2 detection by the gustatory system mediates acceptance behaviour, demonstrating that the context of CO2 determines appropriate behaviour. This work opens up the possibility that the taste of carbonation may also exist in other organisms.


Assuntos
Dióxido de Carbono/análise , Drosophila melanogaster/fisiologia , Paladar/fisiologia , Animais , Comportamento Animal , Encéfalo/citologia , Encéfalo/metabolismo , Dióxido de Carbono/química , Gelo-Seco , Preferências Alimentares , Gases/química , Concentração de Íons de Hidrogênio , Ligantes , Neurônios/metabolismo , Olfato/fisiologia , Bicarbonato de Sódio/análise , Soluções/química , Água/química
2.
Neuron ; 49(2): 285-95, 2006 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-16423701

RESUMO

The sense of taste allows animals to distinguish nutritious and toxic substances and elicits food acceptance or avoidance behaviors. In Drosophila, taste cells that contain the Gr5a receptor are necessary for acceptance behavior, and cells with the Gr66a receptor are necessary for avoidance. To determine the cellular substrates of taste behaviors, we monitored taste cell activity in vivo with the genetically encoded calcium indicator G-CaMP. These studies reveal that Gr5a cells selectively respond to sugars and Gr66a cells to bitter compounds. Flies are attracted to sugars and avoid bitter substances, suggesting that Gr5a cell activity is sufficient to mediate acceptance behavior and that Gr66a cell activation mediates avoidance. As a direct test of this hypothesis, we inducibly activated different taste neurons by expression of an exogenous ligand-gated ion channel and found that cellular activity is sufficient to drive taste behaviors. These studies demonstrate that taste cells are tuned by taste category and are hardwired to taste behaviors.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/fisiologia , Paladar/fisiologia , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Mapeamento Encefálico , Drosophila , Feminino , Corantes Fluorescentes , Processamento de Imagem Assistida por Computador , Ligantes , Microscopia Confocal , Neurônios/fisiologia , Órgãos dos Sentidos/fisiologia
3.
Proc Natl Acad Sci U S A ; 102(5): 1743-8, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15677322

RESUMO

It has long been suspected that sensory signal transmission is inhibited in the mammalian brain during sleep. We hypothesized that Cav3.1 T-type Ca2+ channel currents inhibit thalamic sensory transmission to promote sleep. We found that T-type Ca2+ channel activation caused prolonged inhibition (>9 s) of action-potential firing in thalamic projection neurons of WT but not Cav3.1 knockout mice. Inhibition occurred with synaptic transmission blocked and required an increase of intracellular Ca2+. Furthermore, focal deletion of the gene encoding Cav3.1 from the rostral-midline thalamus by using Cre/loxP recombination led to frequent and prolonged arousal, which fragmented and reduced sleep. Interestingly, sleep was not disturbed when Cav3.1 was deleted from cortical pyramidal neurons. These findings support the hypothesis that thalamic T-type Ca2+ channels are required to block transmission of arousal signals through the thalamus and to stabilize sleep.


Assuntos
Canais de Cálcio Tipo T/fisiologia , Sono/fisiologia , Tálamo/fisiologia , Potenciais de Ação/fisiologia , Animais , Cálcio/fisiologia , Canais de Cálcio Tipo T/deficiência , Canais de Cálcio Tipo T/genética , Hibridização In Situ , Técnicas In Vitro , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligodesoxirribonucleotídeos Antissenso , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...