Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Qual ; 35(2): 641-50, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16510709

RESUMO

Dormant-season application of biosolids increases desert grass production more than growing season application in the first growing season after application. Differential patterns of NO3-N (plant available N) release following seasonal biosolids application may explain this response. Experiments were conducted to determine soil nitrate nitrogen dynamics following application of biosolids during two seasons in a tobosagrass [Hilaria mutica (Buckl.) Benth.] Chihuahuan Desert grassland. Biosolids were applied either in the dormant (early April) or growing (early July) season at 0, 18, or 34 dry Mg ha(-1). A polyester-nylon mulch was also applied to serve as a control that approximated the same physical effects on the soil surface as the biosolids but without any chemical effects. Supplemental irrigation was applied to half of the plots. Soil NO3-N was measured at two depths (0-5 and 5-15 cm) underneath biosolids (or mulch) and in interspace positions relative to surface location of biosolids (or mulch). Dormant-season biosolids application significantly increased soil NO3-N during the first growing season, and also increased soil NO3-N throughout the first growing season compared to growing-season biosolids application in a year of higher-than-average spring precipitation. In a year of lower-than-average spring precipitation, season of application did not affect soil NO3-N. Soil NO3-N was higher at both biosolids rates for both seasons of application than in the control treatment. Biosolids increased soil NO3-N compared to the inert mulch. Irrigation did not significantly affect soil NO3-N. Soil NO3-N was not significantly different underneath biosolids and in interspace positions. Surface soil NO3-N was higher during the first year of biosolids application, and subsurface soil NO3-N increased during the second year. Results showed that biosolids rate and season of application affected soil NO3-N measured during the growing season. Under dry spring-normal summer precipitation conditions, season of application did not affect soil NO3-N; in contrast, dormant season application increased soil NO3-N more than growing season application under wet spring-dry summer conditions.


Assuntos
Nitratos/análise , Poaceae/crescimento & desenvolvimento , Esgotos , Solo/análise , Clima Desértico , Fertilizantes/análise , Metais/análise , Nitrogênio/análise , Esgotos/análise , Texas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...