Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Med Microbiol ; 315: 151620, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579524

RESUMO

Staphylococcus epidermidis is part of the commensal microbiota of the skin and mucous membranes, though it can also act as a pathogen in certain scenarios, causing a range of infections, including periprosthetic joint infection (PJI). Transcriptomic profiling may provide insights into mechanisms by which S. epidermidis adapts while in a pathogenic compared to a commensal state. Here, a total RNA-sequencing approach was used to profile and compare the transcriptomes of 19 paired PJI-associated S. epidermidis samples from an in vivo clinical source and grown in in vitro laboratory culture. Genomic comparison of PJI-associated and publicly available commensal-state isolates were also compared. Of the 1919 total transcripts found, 145 were from differentially expressed genes (DEGs) when comparing in vivo or in vitro samples. Forty-two transcripts were upregulated and 103 downregulated in in vivo samples. Of note, metal sequestration-associated genes, specifically those related to staphylopine activity (cntA, cntK, cntL, and cntM), were upregulated in a subset of clinical in vivo compared to laboratory grown in vitro samples. About 70% of the total transcripts and almost 50% of the DEGs identified have not yet been annotated. There were no significant genomic differences between known commensal and PJI-associated S. epidermidis isolates, suggesting that differential genomics may not play a role in S. epidermidis pathogenicity. In conclusion, this study provides insights into phenotypic alterations employed by S epidermidis to adapt to infective and non-infected microenvironments, potentially informing future therapeutic targets for related infections.


Assuntos
Perfilação da Expressão Gênica , Infecções Relacionadas à Prótese , Infecções Estafilocócicas , Staphylococcus epidermidis , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/patogenicidade , Staphylococcus epidermidis/isolamento & purificação , Infecções Relacionadas à Prótese/microbiologia , Humanos , Infecções Estafilocócicas/microbiologia , Feminino , Masculino , Idoso , Transcriptoma , Regulação Bacteriana da Expressão Gênica , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais
2.
Open Forum Infect Dis ; 10(12): ofad546, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38075017

RESUMO

Background: Shotgun and targeted metagenomic sequencing have been shown in separate studies to be potentially useful for culture-free pathogen identification in blood and/or plasma of patients with infective endocarditis (IE). However, the 2 approaches have not been directly compared. The aim of this study was to compare shotgun metagenomic sequencing with targeted metagenomic sequencing (tMGS) for organism identification in blood or plasma of patients with IE. Methods: Patients with possible or definite IE were prospectively enrolled from October 2020 to July 2021. Shotgun metagenomic sequencing was performed with the Karius test, which uses microbial cell-free DNA (mcfDNA) sequencing to detect, identify, and quantitate DNA-based pathogens in plasma. tMGS was performed using a 16S ribosomal RNA (rRNA) polymerase chain reaction assay targeting the V1 to V3 regions of the 16S rRNA gene. Results were compared using the McNemar test of paired proportions. Results: Samples from 34 patients were investigated. The Karius test was positive in 24/34 (71%), including 3/6 (50%) with blood culture-negative endocarditis (BCNE), which was not significantly different from the positivity rate of tMGS (P = .41). Results of the Karius test were concordant with tMGS in 75% of cases. The Karius test detected 2 cases of methicillin-resistant Staphylococcus aureus among the 7 S. aureus detections, in accordance with results of phenotypic susceptibility testing. The combination of blood cultures, the Karius test, and tMGS found a potential causative pathogen in 33/34 (97%), including 5/6 with BCNE. Conclusions: The Karius test and tMGS yielded comparable detection rates; however, beyond organism identification, the Karius test generated potentially useful antibiotic resistance data.

3.
Front Immunol ; 14: 1183977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37654491

RESUMO

Background: Periprosthetic joint infection (PJI) is a devastating complication of total joint arthroplasty surgery. Increased densities of activated mast cells have been predicted to be present in PJI compared to non-infectious arthroplasty failure based on analysis of transcriptomic data, but their presence in PJI-associated periprosthetic tissues has not been visually confirmed. Objective: This preliminary study investigated the presence and activation status of mast cells in periprosthetic tissues associated with PJI. Methods: Periprosthetic tissues from five PJI cases and three arthroplasty failures due to instability and one due to stiffness were immunohistochemically stained using tryptase and microscopically evaluated to enumerate mast cells and evaluate overall activation status within tissue samples. Mast cell activation was evidenced by the release of tryptase into the extracellular space surrounding mast cells. Results: Mast cells were found in all samples, with average cellular densities of 22 and 26 cells/mm2 tissue in PJI and uninfected samples, respectively (p, 0.6610). Apparent mast cell activation and degranulation was readily observed throughout each of the five PJI samples studied, but not in any of the uninfected samples studied. Conclusion: While preliminary, these findings provide evidence for a role of mast cells in the immune response in PJI. Additional investigation of the role of mast cells during arthroplasty failure is warranted, providing a better understanding of underlying biology and informing potential diagnostic and treatment targets.


Assuntos
Artrite Infecciosa , Infecções Relacionadas à Prótese , Humanos , Mastócitos , Triptases , Apresentação de Antígeno
4.
Proteomics Clin Appl ; 17(5): e2200071, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36938941

RESUMO

PURPOSE: This pilot study aimed to use proteomic profiling of sonicate fluid samples to compare host response during Staphylococcus aureus-associated periprosthetic joint infection (PJI) and non-infected arthroplasty failure (NIAF) and identify potential novel biomarkers differentiating the two. EXPERIMENTAL DESIGN: In this pilot study, eight sonicate fluid samples (four from NIAF and four from S. aureus PJI) were studied. Samples were reduced, alkylated, and trypsinized overnight, followed by analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) on a high-resolution Orbitrap Eclipse mass spectrometer. MaxQuant software suite was used for protein identification, filtering, and label-free quantitation. RESULTS: Principal component analysis of the identified proteins clearly separated S. aureus PJI and NIAF samples. Overall, 810 proteins were identified based on their detection in at least three out of four samples from each group; 35 statistically significant differentially abundant proteins (DAPs) were found (two-sample t-test p-values ≤0.05 and log2 fold-change values ≥2 or ≤-2). Gene ontology pathway analysis found that microbial defense responses, specifically those related to neutrophil activation, to be increased in S. aureus PJI compared to NIAF samples. CONCLUSION AND CLINICAL RELEVANCE: Proteomic profiling of sonicate fluid using LC-MS/MS differentiated S. aureus PJI and NIAF in this pilot study. Further work is needed using a larger sample size and including non-S. aureus PJI and a diversty of NIAF-types.


Assuntos
Infecções Relacionadas à Prótese , Staphylococcus aureus , Humanos , Infecções Relacionadas à Prótese/diagnóstico , Projetos Piloto , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem
6.
Antibiotics (Basel) ; 12(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36830206

RESUMO

Arthroplasty failure is a major complication of joint replacement surgery. It can be caused by periprosthetic joint infection (PJI) or non-infectious etiologies, and often requires surgical intervention and (in select scenarios) resection and reimplantation of implanted devices. Fast and accurate diagnosis of PJI and non-infectious arthroplasty failure (NIAF) is critical to direct medical and surgical treatment; differentiation of PJI from NIAF may, however, be unclear in some cases. Traditional culture, nucleic acid amplification tests, metagenomic, and metatranscriptomic techniques for microbial detection have had success in differentiating the two entities, although microbiologically negative apparent PJI remains a challenge. Single host biomarkers or, alternatively, more advanced immune response profiling-based approaches may be applied to differentiate PJI from NIAF, overcoming limitations of microbial-based detection methods and possibly, especially with newer approaches, augmenting them. In this review, current approaches to arthroplasty failure diagnosis are briefly overviewed, followed by a review of host-based approaches for differentiation of PJI from NIAF, including exciting futuristic combinational multi-omics methodologies that may both detect pathogens and assess biological responses, illuminating causes of arthroplasty failure.

7.
J Bone Joint Surg Am ; 105(1): 63-73, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36574631

RESUMO

BACKGROUND: Although cellularity is traditionally assessed morphologically, deep sequencing approaches being used for microorganism detection may be able to provide information about cellularity. We hypothesized that cellularity predicted using CIBERSORTx (Stanford University), a transcriptomic-based cellular deconvolution tool, would differentiate between infectious and non-infectious arthroplasty failure. METHODS: CIBERSORTx-derived cellularity profiles of 93 sonicate fluid samples, including 53 from subjects who underwent failed arthroplasties due to periprosthetic joint infection (PJI) (abbreviated for the purpose of this study as PJIF) and 40 from subjects who had undergone non-infectious arthroplasty failure (abbreviated NIAF) that had been subjected to bulk RNA sequencing were evaluated. RESULTS: Samples from PJIF and NIAF subjects were differentially clustered by principal component analysis based on the cellularity profile. Twelve of the 22 individual predicted cellular fractions were differentially expressed in the PJIF cases compared with the NIAF cases, including increased predicted neutrophils (mean and standard error, 9.73% ± 1.06% and 0.81% ± 0.60%), activated mast cells (17.12% ± 1.51% and 4.11% ± 0.44%), and eosinophils (1.96% ± 0.37% and 0.42% ± 0.21%), and decreased predicted M0 macrophages (21.33% ± 1.51% and 39.75% ± 2.45%), M2 macrophages (3.56% ± 0.52% and 8.70% ± 1.08%), and regulatory T cells (1.57% ± 0.23% and 3.20% ± 0.34%). The predicted total granulocyte fraction was elevated in the PJIF cases (32.97% ± 2.13% and 11.76% ± 1.61%), and the samples from the NIAF cases had elevated predicted total macrophage and monocyte (34.71% ± 1.71% and 55.34% ± 2.37%) and total B cell fractions (5.89% ± 0.30% and 8.62% ± 0.86%). Receiver operating characteristic curve analysis identified predicted total granulocytes, neutrophils, and activated mast cells as highly able to differentiate between the PJIF cases and the NIAF cases. Within the PJIF cases, the total granulocyte, total macrophage and monocyte, M0 macrophage, and M2 macrophage fractions were differentially expressed in Staphylococcus aureus compared with Staphylococcus epidermidis -associated samples. Within the NIAF cases, the predicted total B cell, naïve B cell, plasma cell, and M2 macrophage fractions were differentially expressed among different causes of failure. CONCLUSIONS: CIBERSORTx can predict the cellularity of sonicate fluid using transcriptomic data, allowing for the evaluation of the underlying immune response during the PJIF and NIAF cases, without a need to phenotypically assess cell composition.


Assuntos
Artrite Infecciosa , Infecções Relacionadas à Prótese , Humanos , Transcriptoma , Infecções Relacionadas à Prótese/diagnóstico , Artroplastia , Artrite Infecciosa/diagnóstico , Curva ROC
8.
Sci Rep ; 12(1): 21725, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526679

RESUMO

Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in developed countries, characterized by the death of retinal pigment epithelial (RPE) cells and photoreceptors. Previous studies report an accumulation of damaged and dysfunctional mitochondria in RPE of human donors with AMD. Understanding how damaged mitochondria accumulate in AMD is an important step in discovering disease mechanisms and identifying therapeutic targets. In this report, we assessed mitochondrial fission and fusion by quantifying proteins and measured mitochondrial autophagy (mitophagy) via protein analysis and advanced imaging techniques using mitochondrial targeted mKeima in primary human RPE from donors with or without AMD. We report disease-specific differences in mitochondrial proteins that regulate fission, fusion, and mitophagy that were present at baseline and with treatments to stimulate these pathways. Data suggest AMD RPE utilize receptor-mediated mitophagy as a compensatory mechanism for deficits in the ubiquitin-mediated mitophagy pathway. These changes in mitochondrial homeostasis could lead to the buildup of damaged and dysfunctional mitochondria observed in the RPE of AMD donors.


Assuntos
Degeneração Macular , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Dinâmica Mitocondrial , Estresse Oxidativo , Degeneração Macular/metabolismo , Autofagia
9.
mBio ; 13(6): e0132222, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36354331

RESUMO

Preoperative pathogen identification in patients with periprosthetic joint infection (PJI) is typically limited to synovial fluid culture. Whether sequencing-based approaches are of potential use in identification of pathogens in PJI, and if so which approach is ideal, is incompletely defined. The objective of the study was to analyze the accuracy of a 16S rRNA (rRNA) gene-based PCR followed by Sanger sequencing and/or targeted metagenomic sequencing approach (tMGS) performed on synovial fluid for PJI diagnosis. A retrospective study was conducted, analyzing synovial fluids tested between August 2020 and May 2021 at a single center. Subjects with hip, knee, shoulder, and elbow arthroplasties who had synovial fluid aspirated and clinically subjected to sequence-based testing and conventional culture were studied. A total of 154 subjects were included in the study; 118 had noninfectious arthroplasty failure (NIAF), while 36 had PJI. Clinical sensitivity and specificity for diagnosis of PJI were 69% and 100%, respectively, for the sequencing-based approach and 72% and 100%, respectively, for conventional culture (P = 0.74). The combination of both tests was more sensitive (83%) than culture alone (P = 0.04). Results of sequencing-based testing led to changes in treatment in four of 36 (11%) PJI subjects. Microbial identification was achieved using Sanger and next generation sequencing in 19 and 6 subjects, respectively. When combined with culture, the described 16S rRNA gene sequencing-based approach increased sensitivity compared to culture alone, suggesting its potential use in the diagnosis of PJI when synovial fluid culture is negative. IMPORTANCE Periprosthetic joint infection (PJI) is a dreadful complication of joint replacement. Noninvasive identification of infectious pathogens has been traditionnally limited to culture-based testing of synovial fluid which has poor sensitivity. Sanger and Next-generation sequencing (NGS) may be used for synovial fluid testing in PJI, but experience in routine practice is sparse. We used a targeted metagenomic sequencing approach for routine testing of synovial fluid involving NGS when Sanger sequencing had failed or was likely to fail. The objective of this study was to analyze the approach's performance for diagnosis of PJI in comparison to culture for testing synovial fluid. Overall, the sequencing-based approach was not superior to culture for diagnosis of PJI, but yielded positive results in some culture-negative samples.


Assuntos
Artrite Infecciosa , Infecções Relacionadas à Prótese , Humanos , RNA Ribossômico 16S , Genes de RNAr , Líquido Sinovial , Sequenciamento de Nucleotídeos em Larga Escala , Estudos Retrospectivos , Sensibilidade e Especificidade , Biomarcadores
10.
Sci Rep ; 12(1): 16135, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167782

RESUMO

Periprosthetic joint infection (PJI) is a major complication of total joint arthroplasty, typically necessitating surgical intervention and prolonged antimicrobial therapy. Currently, there is no perfect assay for PJI diagnosis. Proteomic profiling of sonicate fluid has the potential to differentiate PJI from non-infectious arthroplasty failure (NIAF) and possibly clinical subsets of PJI and/or NIAF. In this study, 200 sonicate fluid samples, including 90 from subjects with NIAF (23 aseptic loosening, 35 instability, 10 stiffness, five osteolysis, and 17 other) and 110 from subjects with PJI (40 Staphylococcus aureus, 40 Staphylococcus epidermidis, 10 Staphylococcus lugdunensis, 10 Streptococcus agalactiae, and 10 Enterococcus faecalis) were analyzed by proximity extension assay using the 92 protein Inflammation Panel from Olink Proteomics. Thirty-seven of the 92 proteins examined, including CCL20, OSM, EN-RAGE, IL8, and IL6, were differentially expressed in PJI versus NIAF sonicate fluid samples, with none of the 92 proteins differentially expressed between staphylococcal versus non-staphylococcal PJI, nor between the different types of NIAF studied. IL-17A and CCL11 were differentially expressed between PJI caused by different bacterial species, with IL-17A detected at higher levels in S. aureus compared to S. epidermidis and S. lugdunensis PJI, and CCL11 detected at higher levels in S. epidermidis compared to S. aureus and S. agalactiae PJI. Receiver operative characteristic curve analysis identified individual proteins and combinations of proteins that could differentiate PJI from NIAF. Overall, proteomic profiling using this small protein panel was able to differentiate between PJI and NIAF sonicate samples and provide a better understanding of the immune response during arthroplasty failure.


Assuntos
Artrite Infecciosa , Artroplastia de Quadril , Infecções Relacionadas à Prótese , Staphylococcus lugdunensis , Artroplastia/efeitos adversos , Humanos , Inflamação , Interleucina-17 , Interleucina-6/uso terapêutico , Interleucina-8/uso terapêutico , Infecções Relacionadas à Prótese/microbiologia , Proteômica , Staphylococcus aureus , Staphylococcus epidermidis
11.
J Clin Microbiol ; 60(9): e0062122, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36040200

RESUMO

Initial microbiologic diagnosis of infective endocarditis (IE) relies on blood cultures and Bartonella and Coxiella burnetii serology. Small case series and one prospective study have preliminarily reported application of metagenomic sequencing on blood or plasma for IE diagnosis. Here, results of a prospective pilot study evaluating targeted metagenomic sequencing (tMGS) for blood-based early pathogen detection and identification in IE are reported. Subjects diagnosed with possible or definite IE at a single institution were prospectively enrolled with informed consent from October 2020 to July 2021. Blood was drawn and separated into whole blood and plasma. Both specimen types were subjected to nucleic acid extraction and PCR targeting the V1-V3 region of the 16S ribosomal RNA gene, followed by next-generation sequencing on an Illumina MiSeqTM platform. 35 subjects, 28 (80%) with definite and 7 (20%) with possible IE were enrolled, including 6 (17%) with blood culture-negative endocarditis (BCNE). Overall, 20 whole blood (59%) and 16 plasma (47%) samples tested positive (P = 0.47). When results of whole blood and plasma testing were combined, a positive tMGS result was found in 23 subjects (66%). tMGS identified a potential pathogen in 5 of 6 culture-negative IE cases. Although further study is needed, the results of this pilot study suggest that blood-based tMGS may provide pathogen identification in subjects with IE, including in culture-negative cases.


Assuntos
Endocardite Bacteriana , Endocardite , Endocardite/diagnóstico , Endocardite/microbiologia , Endocardite Bacteriana/diagnóstico , Endocardite Bacteriana/microbiologia , Humanos , Metagenômica , Projetos Piloto , Estudos Prospectivos , RNA Ribossômico 16S/genética
12.
Cells ; 11(13)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35805159

RESUMO

Age-related macular degeneration (AMD), the leading cause of blindness in the elderly, is characterized by the death of retinal pigment epithelium (RPE) and photoreceptors. One of the risk factors associated with developing AMD is the single nucleotide polymorphism (SNP) found within the gene encoding complement factor H (CFH). Part of the innate immune system, CFH inhibits alternative complement pathway activation. Multi-protein complexes called inflammasomes also play a role in the innate immune response. Previous studies reported that inflammasome activation may contribute to AMD pathology. In this study, we used primary human adult RPE cell cultures from multiple donors, with and without AMD, that were genotyped for the Y402H CFH risk allele. We found complement and inflammasome-related genes and proteins at basal levels in RPE tissue and cell cultures. Additionally, treatment with rotenone, bafilomycin A, and ATP led to inflammasome activation. Overall, the response to priming and activation was similar, irrespective of disease state or CFH genotype. While these data show that the inflammasome is present and active in RPE, our results suggest that inflammasome activation may not contribute to early AMD pathology.


Assuntos
Degeneração Macular , Epitélio Pigmentado da Retina , Idoso , Genótipo , Humanos , Inflamassomos/metabolismo , Degeneração Macular/metabolismo , Polimorfismo de Nucleotídeo Único , Epitélio Pigmentado da Retina/metabolismo
13.
Antioxidants (Basel) ; 11(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35453289

RESUMO

Primary cultures of retinal pigment epithelium (RPE) from human adult donors (haRPE) and induced pluripotent stem cell derived-RPE (iPSC-RPE) are valuable model systems for gaining mechanistic insight and for testing potential therapies for age-related macular degeneration (AMD). This study evaluated the treatment response of haRPE and iPSC-RPE to oxidative stress and potential therapeutics addressing mitochondrial defects. haRPE and iSPC-RPE were derived from donors with or without AMD. Mitochondrial function was measured after treatment with menadione, AICAR, or trehalose and the response to treatment was compared between cell models and by disease status. In a subset of samples, haRPE and iPSC-RPE were generated from the same human donor to make a side-by-side comparison of the two cell models' response to treatment. Disease-specific responses to all three treatments was observed in the haRPE. In contrast, iPSC-RPE had a similar response to all treatments irrespective of disease status. Analysis of haRPE and iPSC-RPE generated from the same human donor showed a similar response for donors without AMD, but there were significant differences in treatment response between cell models generated from AMD donors. These results support the use of iPSC-RPE and haRPE when investigating AMD mechanisms and new therapeutics but indicates that attention to experimental conditions is required.

14.
Exp Eye Res ; 217: 108981, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35167864

RESUMO

The retinal pigment epithelium is a pigmented monolayer of cells that help maintain a healthy retina. Loss of this essential cell layer is implicated in a number of visual disorders, including age-related macular degeneration (AMD). Utilizing primary RPE cultures to investigate disease is an important step in understanding disease mechanisms. However, the use of primary RPE cultures presents a number of challenges, including the limited number of cells available and the presence of auto-fluorescent pigment that interferes with quantifying fluorescent probes. Additionally, primary RPE are difficult to transfect with exogenous nucleic acids traditionally used for fluorescent imaging. To overcome these challenges, we used an adeno-associated viral (AAV) vector to express a pH sensitive fluorescent protein, mKeima, fused to the mitochondrial targeting sequence of cytochrome oxidase subunit 8A (mKeima-mito). mKeima-mito allows for quantification of mitochondrial autophagy (mitophagy) in live-cell time-lapse imaging experiments. We also developed an image analysis pipeline to selectively quantify mKeima-mito while removing the signal of auto-fluorescent pigment from the dataset by utilizing information from the mKeima fluorescent channels. These techniques are demonstrated in primary RPE cultures expressing mKeima-mito treated with 2-[2-[4-(trifluoromethoxy)phenyl]hydrazinylidene]-propanedinitrile (FCCP), an uncoupler that depolarizes the mitochondrial membrane and leads to mitochondrial fragmentation and mitophagy. The techniques outlined provide a roadmap for investigating disease mechanisms or the effect of treatments utilizing fluorescent probes in an important cell culture model.


Assuntos
Corantes Fluorescentes , Mitofagia , Células Cultivadas , Células Epiteliais , Corantes Fluorescentes/metabolismo , Humanos , Epitélio Pigmentado da Retina/metabolismo , Pigmentos da Retina/metabolismo
15.
Radiology ; 302(3): 676-683, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34931861

RESUMO

Background Concerns over the neurotoxic potential of retained gadolinium in brain tissues after intravenous gadolinium-based contrast agent (GBCA) administration have led to pronounced worldwide use changes, yet the clinical sequelae of gadolinium retention remain undefined. Purpose To assess clinical and neurologic effects and potential neurotoxicity of gadolinium retention in rats after administration of various GBCAs. Materials and Methods From March 2017 through July 2018, 183 male Wistar rats received 20 intravenous injections of 2.5 mmol per kilogram of body weight (80 human equivalent doses) of various GBCAs (gadodiamide, gadobenate, gadopentetate, gadoxetate, gadobutrol, gadoterate, and gadoteridol) or saline over 4 weeks. Rats were evaluated 6 and 34 weeks after injection with five behavioral tests, and inductively coupled plasma mass spectrometry, transmission electron microscopy, and histopathology were performed on urine, serum, cerebrospinal fluid (CSF), basal ganglia, dentate nucleus, and kidney samples. Dunnett post hoc test and Wilcoxon rank sum test were used to compare differences between treatment groups. Results No evidence of differences in any behavioral test was observed between GBCA-exposed rats and control animals at either 6 or 34 weeks (P = .08 to P = .99). Gadolinium concentrations in both neuroanatomic locations were higher in linear GBCA-exposed rats than macrocyclic GBCA-exposed rats at 6 and 34 weeks (P < .001). Gadolinium clearance over time varied among GBCAs, with gadobutrol having the largest clearance (median: 62% for basal ganglia, 70% for dentate) and gadodiamide having no substantial clearance. At 34 weeks, gadolinium was largely cleared from the CSF and serum of gadodiamide-, gadobenate-, gadoterate-, and gadobutrol-exposed rats, especially for the macrocyclic agents (range: 70%-98% removal for CSF, 34%-94% removal for serum), and was nearly completely removed from urine (range: 96%-99% removal). Transmission electron microscopy was used to detect gadolinium foci in linear GBCA-exposed brain tissue, but no histopathologic differences were observed for any GBCA. Conclusion In this rat model, no clinical evidence of neurotoxicity was observed after exposure to linear and macrocyclic gadolinium-based contrast agents at supradiagnostic doses. © RSNA, 2022 Online supplemental material is available for this article.


Assuntos
Encéfalo/efeitos dos fármacos , Meios de Contraste/administração & dosagem , Gadolínio/administração & dosagem , Administração Intravenosa , Animais , Encéfalo/metabolismo , Meios de Contraste/metabolismo , Gadolínio/metabolismo , Masculino , Modelos Animais , Ratos , Ratos Wistar
16.
J Cell Sci ; 133(24)2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33376154

RESUMO

The centrosome, which consists of centrioles and pericentriolar material (PCM), becomes mature and assembles mitotic spindles by increasing the number of microtubules (MTs) emanating from the PCM. Among the molecules involved in centrosome maturation, Cep192 and Aurora A (AurA, also known as AURKA) are primarily responsible for recruitment of γ-tubulin and MT nucleators, whereas pericentrin (PCNT) is required for PCM organization. However, the role of Cep215 (also known as CDK5RAP2) in centrosome maturation remains elusive. Cep215 possesses binding domains for γ-tubulin, PCNT and MT motors that transport acentrosomal MTs towards the centrosome. We identify a mitosis-specific centrosome-targeting domain of Cep215 (215N) that interacts with Cep192 and phosphorylated AurA (pAurA). Cep192 is essential for targeting 215N to centrosomes, and centrosomal localization of 215N and pAurA is mutually dependent. Cep215 has a relatively minor role in γ-tubulin recruitment to the mitotic centrosome. However, it has been shown previously that this protein is important for connecting mitotic centrosomes to spindle poles. Based on the results of rescue experiments using versions of Cep215 with different domain deletions, we conclude that Cep215 plays a role in maintaining the structural integrity of the spindle pole by providing a platform for the molecules involved in centrosome maturation.


Assuntos
Aurora Quinase A , Mitose , Aurora Quinase A/genética , Proteínas de Ciclo Celular/genética , Centrossomo , Proteínas Cromossômicas não Histona/genética , Células HeLa , Humanos , Proteínas do Tecido Nervoso , Fuso Acromático/genética , Tubulina (Proteína)/genética
17.
Diagn Microbiol Infect Dis ; 97(3): 115040, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32354459

RESUMO

Staphylococci are the most common causes of periprosthetic joint infection (PJI). TNP-2092 is an investigational hybrid drug composed of rifamycin and quinolizinone pharmacophores conjugated via a covalent linker. We determined minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum biofilm bactericidal concentration (MBBC) values of TNP-2092 against 80 PJI-associated Staphylococcus aureus and Staphylococcus epidermidis isolates compared to ciprofloxacin and rifampin alone and in combination, alongside daptomycin and vancomycin. TNP-2092 exhibited the following activity against S. aureus: MIC50/MIC90, ≤0.0075/0.015 µg/mL; MBC50/MBC90, 0.5/4 µg/mL; and MBBC50/MBBC90, 0.5/2 µg/mL, and the following activity against S. epidermidis: MIC50/MIC90, ≤0.0075/0.015 µg/mL; MBC50/MBC90, 0.015/0.125 µg/mL; and MBBC50/MBBC90, 0.06/0.25 µg/mL. TNP-2092 MIC, MBC, and MBBC values were >8 µg/mL for 1 isolate, while MIC values were ≤0.25 µg/mL and MBC and MBBC values were ≤4 µg/mL for all other isolates. Results of this study show that TNP-2092 has promising in vitro activity against PJI-associated staphylococci.


Assuntos
Antibacterianos/farmacologia , Infecções Relacionadas à Prótese/microbiologia , Rifamicinas/farmacologia , Infecções Estafilocócicas/microbiologia , Staphylococcus/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Humanos , Prótese Articular/efeitos adversos , Prótese Articular/microbiologia , Testes de Sensibilidade Microbiana , Staphylococcus/isolamento & purificação
18.
PLoS One ; 15(4): e0231212, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32275682

RESUMO

Two major proteolytic systems, the proteasome and the autophagy pathway, are key components of the proteostasis network. The immunoproteasome, a proteasome subtype, and autophagy are upregulated under stress conditions, forming a coordinated unit designed to minimize the effect of cell stress. We investigated how genetic ablation of the LMP2 immunoproteasome subunit affects autophagy in retinal pigment epithelium (RPE) from WT and LMP2 knockout mice. We monitored autophagy regulation by measuring LC3, phosphorylation of AKT (S473), and phosphorylation of S6, a downstream readout of AKT (mTOR) pathway activation. We also evaluated transcription factor EB (TFEB) nuclear translocation, a transcription factor that controls expression of autophagy and lysosome genes. WT and LMP2 KO cells were monitored after treatment with EBSS to stimulate autophagy, insulin to stimulate AKT, or an AKT inhibitor (trehalose or MK-2206). Under basal conditions, we observed hyper-phosphorylation of AKT and S6, as well as lower nuclear-TFEB content in LMP2 KO RPE compared with WT. AKT inhibitors MK-2206 and trehalose significantly inhibited AKT phosphorylation and stimulated nuclear translocation of TFEB. Starvation and AKT inhibition upregulated autophagy, albeit to a lesser extent in LMP2 KO RPE. These data support the idea that AKT hyper-activation is an underlying cause of defective autophagy regulation in LMP2 KO RPE, revealing a unique link between two proteolytic systems and a previously unknown function in autophagy regulation by the immunoproteasome.


Assuntos
Autofagia , Complexo de Endopeptidases do Proteassoma/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Retina/citologia , Animais , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células Cultivadas , Cisteína Endopeptidases/metabolismo , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Insulina/farmacologia , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Epitélio Pigmentado da Retina/citologia , Transdução de Sinais/efeitos dos fármacos
19.
Trends Mol Med ; 26(1): 105-118, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31771932

RESUMO

Mitochondrial dysfunction is involved in the pathology of two major blinding retinal diseases, diabetic retinopathy (DR) and age-related macular degeneration (AMD). These diseases accumulate mitochondrial defects in distinct retinal subcellular structures, the vascular/neural network in DR and the retinal pigment epithelium (RPE) in AMD. These mitochondrial defects cause a metabolic crisis that drives disease. With no treatments to stop these diseases, coupled with an increasing population suffering from AMD and DR, there is an urgent need to develop new therapeutics targeting the mitochondria to prevent or reverse disease-specific pathology.


Assuntos
Degeneração Macular/patologia , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Doenças Retinianas/patologia , Animais , Retinopatia Diabética/patologia , Humanos , Retina/patologia , Epitélio Pigmentado da Retina/patologia
20.
Oxid Med Cell Longev ; 2019: 5174957, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31485293

RESUMO

Age-related macular degeneration (AMD) involves the loss of retinal pigment epithelium (RPE) and photoreceptors and is one of the leading causes of blindness in the elderly. Oxidative damage to proteins, lipids, and DNA has been associated with RPE dysfunction and AMD. In this study, we evaluated oxidative stress in AMD and the efficacy of antioxidant, N-acetyl-L-cysteine (NAC), in protecting RPE from oxidative damage. To test this idea, primary cultures of RPE from human donors with AMD (n = 32) or without AMD (No AMD, n = 21) were examined for expression of NADPH oxidase (NOX) genes, a source of reactive oxygen species (ROS). Additionally, the cells were pretreated with NAC for 2 hours and then treated with either hydrogen peroxide (H2O2) or tert-butyl hydroperoxide (t-BHP) to induce cellular oxidation. Twenty-four hours after treatment, ROS production, cell survival, the content of glutathione (GSH) and adenosine triphosphate (ATP), and cellular bioenergetics were measured. We found increased expression of p22phox, a NOX regulator, in AMD cells compared to No AMD cells (p = 0.02). In both AMD and No AMD cells, NAC pretreatment reduced t-BHP-induced ROS production and protected from H2O2-induced cell death and ATP depletion. In the absence of oxidation, NAC treatment improved mitochondrial function in both groups (p < 0.01). Conversely, the protective response exhibited by NAC was disease-dependent for some parameters. In the absence of oxidation, NAC significantly reduced ROS production (p < 0.001) and increased GSH content (p = 0.02) only in RPE from AMD donors. Additionally, NAC-mediated protection from H2O2-induced GSH depletion (p = 0.04) and mitochondrial dysfunction (p < 0.05) was more pronounced in AMD cells compared with No AMD cells. These results demonstrate the therapeutic benefit of NAC by mitigating oxidative damage in RPE. Additionally, the favorable outcomes observed for AMD RPE support NAC's relevance and the potential therapeutic value in treating AMD.


Assuntos
Acetilcisteína/uso terapêutico , Células Epiteliais/metabolismo , Degeneração Macular/genética , Epitélio Pigmentado da Retina/metabolismo , Acetilcisteína/farmacologia , Humanos , Degeneração Macular/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...