Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(27): 32863-32874, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37378615

RESUMO

Herein are presented several adhesive formulations made from zein protein and tannic acid that can bind to a wide range of surfaces underwater. Higher performance comes from more tannic acid than zein, whereas dry bonding required the opposite case of more zein than tannic acid. Each adhesive works best in the environment that it was designed and optimized for. We show underwater adhesion experiments done on different substrates and in different waters (sea water, saline solution, tap water, deionized water). Surprisingly, the water type does not influence the performance to a great deal but the substrate type does. An additional unexpected result was bond strength increasing over time when exposed to water, contradicting general experiments of working with glues. Initial adhesion underwater was stronger compared to benchtop adhesion, suggesting that water helps to make the glue stick. Temperature effects were determined, indicating maximum bonding at about 30 °C and then another increase at higher temperatures. Once the adhesive was placed underwater, a protective skin formed on the surface, keeping water from entering the rest of the material immediately. The shape of the adhesive could be manipulated easily and, once in place, the skin could be broken to induce faster bond formation. Data indicated that underwater adhesion was predominantly induced by tannic acid, cross-linking within the bulk for adhesion and to the substrate surfaces. The zein protein provided a less polar matrix that helped to keep the tannic acid molecules in place. These studies provide new plant-based adhesives for working underwater and for creating a more sustainable environment.


Assuntos
Adesivos , Zeína , Adesivos/química , Zeína/química , Proteínas , Água/química
2.
ACS Appl Mater Interfaces ; 14(38): 43937-43945, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36103382

RESUMO

Hydrogels are broadly used in applications where polymer materials must interface with biology. The hydrogel network is amorphous, with substantial heterogeneity on length scales up to hundreds of nanometers, in some cases raising challenges for applications that would benefit from highly structured interactions with biomolecules. Here, we show that it is possible to generate ordered patterns of functional groups on polyacrylamide hydrogel surfaces. We demonstrate that, when linear patterns of amines are transferred to polyacrylamide, they pattern interactions with DNA at the interface, a capability of potential importance for preconcentration in chromatographic applications, as well as for the development of nanostructured hybrid materials and supports for cell culture.


Assuntos
Hidrogéis , Polímeros , Resinas Acrílicas , Aminas , DNA/química , Hidrogéis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...