Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 23069, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38155187

RESUMO

Large amounts of net electrical charge are known to accumulate on inhaled aerosols during their generation using commonly-available inhalers. This effect often leads to superfluous deposition in the extra-thoracic airways at the cost of more efficient inhalation therapy. Since the electrostatic force is inversely proportional to the square of the distance between an aerosol and the airway wall, its role has long been recognized as potentially significant in the deep lungs. Yet, with the complexity of exploring such phenomenon directly at the acinar scales, in vitro experiments have been largely limited to upper airways models. Here, we devise a microfluidic alveolated airway channel coated with conductive material to quantify in vitro the significance of electrostatic effects on inhaled aerosol deposition. Specifically, our aerosol exposure assays showcase inhaled spherical particles of 0.2, 0.5, and 1.1 µm that are recognized to reach the acinar regions, whereby deposition is typically attributed to the leading roles of diffusion and sedimentation. In our experiments, electrostatic effects are observed to largely prevent aerosols from depositing inside alveolar cavities. Rather, deposition is overwhelmingly biased along the inter-alveolar septal spaces, even when aerosols are charged with only a few elementary charges. Our observations give new insight into the role of electrostatics at the acinar scales and emphasize how charged particles under 2 µm may rapidly overshadow the traditionally accepted dominance of diffusion or sedimentation when considering aerosol deposition phenomena in the deep lungs.


Assuntos
Modelos Biológicos , Alvéolos Pulmonares , Eletricidade Estática , Tamanho da Partícula , Simulação por Computador , Aerossóis , Pulmão , Administração por Inalação
2.
Eur J Pharm Sci ; 181: 106359, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521723

RESUMO

The applicability of inhalation therapy to some severe pulmonary conditions is often compromised by limited delivery rates (i.e. total dose) and low deposition efficiencies in the respiratory tract, most notably in the deep pulmonary acinar airways. To circumvent such limitations, alternative therapeutic techniques have relied for instance on intratracheal liquid instillations for the delivery of high-dose therapies. Yet, a longstanding mechanistic challenge with such latter methods lies in delivering solutions homogeneously across the whole lungs, despite an inherent tendency of non-uniform spreading driven mainly by gravitational effects. Here, we hypothesize that the pulmonary distribution of instilled liquid solutions can be meaningfully improved by foaming the solution prior to its instillation, owing to the increased volume and the reduced gravitational bias of foams. As a proof-of-concept, we show in excised adult porcine lungs that liquid foams can lead to significant improvement in homogenous pulmonary distributions compared with traditional liquid instillations. Our ex-vivo results suggest that liquid foams can potentially offer an attractive novel pulmonary delivery modality with applications for high-dose regimens of respiratory therapeutics.


Assuntos
Pulmão , Suínos , Animais
3.
J Biomech ; 140: 111131, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35653879

RESUMO

Treating diseased lung regions using inhalation therapy is often limited due to airway constrictions and obstructions that significantly reduce aerosol deposition efficiency. Intratracheal administration of liquid foams is a potential strategy to improve pulmonary drug delivery to these affected airway regions. Here, we use effective viscosity measurements and in vitro small-airway models to examine how shear thinning effects in the foam can be leveraged to achieve a more uniform distribution within heterogeneously constricted or partially obstructed airways. We find that a foamed solution based on the formulation of Tacholiquin® exhibited a 5.75-fold decrease in effective viscosity across a shear rate range spanning 970 to 14'500 s-1. As a result, the foam volume penetrating through the constricted airway models was up to 154% higher compared with air, depending on the cross-sectional area of the constrictions. This proof-of-concept study represents a first step towards understanding the transport mechanics of liquid foams towards future pulmonary delivery applications.


Assuntos
Pulmão , Tórax , Aerossóis , Sistemas de Liberação de Medicamentos , Viscosidade
4.
Biomicrofluidics ; 12(4): 042209, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29887933

RESUMO

The entire luminal surface of the lungs is populated with a complex yet confluent, uninterrupted airway epithelium in conjunction with an extracellular liquid lining layer that creates the air-liquid interface (ALI), a critical feature of healthy lungs. Motivated by lung disease modelling, cytotoxicity studies, and drug delivery assessments amongst other, in vitro setups have been traditionally conducted using macroscopic cultures of isolated airway cells under submerged conditions or instead using transwell inserts with permeable membranes to model the ALI architecture. Yet, such strategies continue to fall short of delivering a sufficiently realistic physiological in vitro airway environment that cohesively integrates at true-scale three essential pillars: morphological constraints (i.e., airway anatomy), physiological conditions (e.g., respiratory airflows), and biological functionality (e.g., cellular makeup). With the advent of microfluidic lung-on-chips, there have been tremendous efforts towards designing biomimetic airway models of the epithelial barrier, including the ALI, and leveraging such in vitro scaffolds as a gateway for pulmonary disease modelling and drug screening assays. Here, we review in vitro platforms mimicking the pulmonary environment and identify ongoing challenges in reconstituting accurate biological airway barriers that still widely prevent microfluidic systems from delivering mainstream assays for the end-user, as compared to macroscale in vitro cell cultures. We further discuss existing hurdles in scaling up current lung-on-chip designs, from single airway models to more physiologically realistic airway environments that are anticipated to deliver increasingly meaningful whole-organ functions, with an outlook on translational and precision medicine.

5.
Eur J Pharm Sci ; 113: 152-158, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28821437

RESUMO

We present a novel method for characterizing in near real-time the aerodynamic particle size distributions from pharmaceutical inhalers. The proposed method is based on direct imaging of airborne particles followed by a particle-by-particle measurement of settling velocities using image analysis and particle tracking algorithms. Due to the simplicity of the principle of operation, this method has the potential of circumventing potential biases of current real-time particle analyzers (e.g. Time of Flight analysis), while offering a cost effective solution. The simple device can also be constructed in laboratory settings from off-the-shelf materials for research purposes. To demonstrate the feasibility and robustness of the measurement technique, we have conducted benchmark experiments whereby aerodynamic particle size distributions are obtained from several commercially-available dry powder inhalers (DPIs). Our measurements yield size distributions (i.e. MMAD and GSD) that are closely in line with those obtained from Time of Flight analysis and cascade impactors suggesting that our imaging-based method may embody an attractive methodology for rapid inhaler testing and characterization. In a final step, we discuss some of the ongoing limitations of the current prototype and conceivable routes for improving the technique.


Assuntos
Aerossóis/química , Inaladores de Pó Seco/métodos , Desenho de Equipamento/métodos , Hidrodinâmica , Pós/química , Administração por Inalação , Algoritmos , Benchmarking , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Inaladores Dosimetrados , Nebulizadores e Vaporizadores , Tamanho da Partícula , Tecnologia Farmacêutica
6.
Inhalation ; 11(3): 21-25, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28690715

RESUMO

This article discusses a novel method to estimate aerodynamic particle size distributions (APSDs) of pharmaceutical aerosols through direct measurement of particle settling velocities using image-based analysis and particle tracking techniques. This simple, optical method provides accurate and fast measurements (approximately 1 minute) with few sources of bias due to specific device design choices or operation conditions. A proof-of-concept for the method is demonstrated by measuring APSDs for widely available commercial dry powder inhalers (DPIs), then comparing the results with previously published data from cascade impactors (CIs) and the Aerodynamic Particle Sizer (APS).

7.
J Biomech ; 50: 222-227, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27871676

RESUMO

The dispersion of inhaled microparticles in the pulmonary acinus of the lungs is often attributed to the complex interplay between convective mixing, due to irreversible flows, and intrinsic particle motion (i.e. gravity and diffusion). However, the role of each mechanism, the exact nature of such interplay between them and their relative importance still remain unclear. To gain insight into these dispersive mechanisms, we track liquid-suspended microparticles and extract their effective diffusivities inside an anatomically-inspired microfluidic acinar model. Such results are then compared to experiments and numerical simulations in a straight channel. While alveoli of the proximal acinar generations exhibit convective mixing characteristics that lead to irreversible particle trajectories, this local effect is overshadowed by a more dominant dispersion mechanism across the ductal branching network that arises from small but significant streamline crossing due to intrinsic diffusional motion in the presence of high velocity gradients. We anticipate that for true airborne particles, which exhibit much higher intrinsic motion, streamline crossing would be even more significant.


Assuntos
Pulmão/fisiologia , Modelos Biológicos , Aerossóis , Difusão , Gravitação , Microfluídica
8.
J Vis Exp ; (111)2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27214269

RESUMO

Quantifying respiratory flow characteristics in the pulmonary acinar depths and how they influence inhaled aerosol transport is critical towards optimizing drug inhalation techniques as well as predicting deposition patterns of potentially toxic airborne particles in the pulmonary alveoli. Here, soft-lithography techniques are used to fabricate complex acinar-like airway structures at the truthful anatomical length-scales that reproduce physiological acinar flow phenomena in an optically accessible system. The microfluidic device features 5 generations of bifurcating alveolated ducts with periodically expanding and contracting walls. Wall actuation is achieved by altering the pressure inside water-filled chambers surrounding the thin PDMS acinar channel walls both from the sides and the top of the device. In contrast to common multilayer microfluidic devices, where the stacking of several PDMS molds is required, a simple method is presented to fabricate the top chamber by embedding the barrel section of a syringe into the PDMS mold. This novel microfluidic setup delivers physiological breathing motions which in turn give rise to characteristic acinar air-flows. In the current study, micro particle image velocimetry (µPIV) with liquid suspended particles was used to quantify such air flows based on hydrodynamic similarity matching. The good agreement between µPIV results and expected acinar flow phenomena suggest that the microfluidic platform may serve in the near future as an attractive in vitro tool to investigate directly airborne representative particle transport and deposition in the acinar regions of the lungs.


Assuntos
Pulmão , Microfluídica , Modelos Biológicos , Alvéolos Pulmonares , Animais , Humanos , Respiração
9.
Sci Rep ; 5: 14071, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26358580

RESUMO

Particle transport phenomena in the deep alveolated airways of the lungs (i.e. pulmonary acinus) govern deposition outcomes following inhalation of hazardous or pharmaceutical aerosols. Yet, there is still a dearth of experimental tools for resolving acinar particle dynamics and validating numerical simulations. Here, we present a true-scale experimental model of acinar structures consisting of bifurcating alveolated ducts that capture breathing-like wall motion and ensuing respiratory acinar flows. We study experimentally captured trajectories of inhaled polydispersed smoke particles (0.2 to 1 µm in diameter), demonstrating how intrinsic particle motion, i.e. gravity and diffusion, is crucial in determining dispersion and deposition of aerosols through a streamline crossing mechanism, a phenomenon paramount during flow reversal and locally within alveolar cavities. A simple conceptual framework is constructed for predicting the fate of inhaled particles near an alveolus by identifying capture and escape zones and considering how streamline crossing may shift particles between them. In addition, we examine the effect of particle size on detailed deposition patterns of monodispersed microspheres between 0.1-2 µm. Our experiments underline local modifications in the deposition patterns due to gravity for particles ≥0.5 µm compared to smaller particles, and show good agreement with corresponding numerical simulations.


Assuntos
Modelos Biológicos , Material Particulado , Alvéolos Pulmonares/fisiologia , Aerossóis , Inalação , Tamanho da Partícula , Material Particulado/metabolismo
10.
Biomicrofluidics ; 9(1): 014120, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25759753

RESUMO

At the onset of life in utero, the respiratory system begins as a liquid-filled tubular organ and undergoes significant morphological changes during fetal development towards establishing a respiratory organ optimized for gas exchange. As airspace morphology evolves, respiratory alveolar flows have been hypothesized to exhibit evolving flow patterns. In the present study, we have investigated flow topologies during increasing phases of embryonic life within an anatomically inspired microfluidic device, reproducing real-scale features of fetal airways representative of three distinct phases of in utero gestation. Micro-particle image velocimetry measurements, supported by computational fluid dynamics simulations, reveal distinct respiratory alveolar flow patterns throughout different stages of fetal life. While attached, streamlined flows characterize the shallow structures of premature alveoli indicative of the onset of saccular stage, separated recirculating vortex flows become the signature of developed and extruded alveoli characteristic of the advanced stages of fetal development. To further mimic physiological aspects of the cellular environment of developing airways, our biomimetic devices integrate an alveolar epithelium using the A549 cell line, recreating a confluent monolayer that produces pulmonary surfactant. Overall, our in vitro biomimetic fetal airways model delivers a robust and reliable platform combining key features of alveolar morphology, flow patterns, and physiological aspects of fetal lungs developing in utero.

11.
J Biomech ; 46(16): 2817-23, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24090494

RESUMO

Convective respiratory flows in the pulmonary acinus and their influence on the fate of inhaled particles are typically studied using computational fluid dynamics (CFD) or scaled-up experimental models. However, experiments that replicate several generations of the acinar tree while featuring cyclic wall motion have not yet been realized. Moreover, current experiments generally capture only flow dynamics, without inhaled particle dynamics, due to difficulties in simultaneously matching flow and particle dynamics. In an effort to overcome these limitations, we introduce a novel microfluidic device mimicking acinar flow characteristics directly at the alveolar scale. The model features an anatomically-inspired geometry that expands and contracts periodically with five dichotomously branching airway generations lined with alveolar-like cavities. We use micro-particle image velocimetry with a glycerol solution as the carrying fluid to quantitatively characterize detailed flow patterns within the device and reveal experimentally for the first time a gradual transition of alveolar flow patterns along the acinar tree from recirculating to radial streamlines, in support of hypothesized predictions from past CFD simulations. The current measurements show that our microfluidic system captures the underlying characteristics of the acinar flow environment, including Reynolds and Womersley numbers as well as cyclic wall displacements and alveolar flow patterns at a realistic length scale. With the use of air as the carrying fluid, our miniaturized platform is anticipated to capture both particle and flow dynamics and serve in the near future as a promising in vitro tool for investigating the mechanisms of particle deposition deep in the lung.


Assuntos
Células Acinares/fisiologia , Técnicas Analíticas Microfluídicas/instrumentação , Modelos Biológicos , Ventilação Pulmonar/fisiologia , Mecânica Respiratória/fisiologia , Desenho de Equipamento , Humanos , Hidrodinâmica , Pulmão/fisiologia , Microfluídica , Alvéolos Pulmonares/fisiologia , Reologia/métodos
12.
Nano Lett ; 12(9): 4992-6, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22900991

RESUMO

Nanoscale organization of surface ligands often has a critical effect on cell-surface interactions. We have developed an experimental system that allows a high degree of control over the 2-D spatial distribution of ligands. As a proof of concept, we used the developed system to study how T-cell activation is independently affected by antigen density and antigen amount per cell. Arrays of submicrometer gold islands at varying surface coverage were defined on silicon by electron beam lithography (EBL). The gold islands were functionalized with alkanethiol self-assembled monolayers (SAMs) containing a small antigen, 2,4,6-trinotrophenyl (TNP), at various densities. Genetically engineered T-cell hybridomas expressing TNP-specific chimeric T-cell antigen receptor (CAR) were cultured on the SAMs, and their activation was assessed by IL-2 secretion and CD69 expression. It was found that, at constant antigen density, activation increased monotonically with the amount of antigen, while at constant antigen amount activation was maximal at an intermediate antigen density, whose value was independent of the amount of antigen.


Assuntos
Alcanos/química , Ouro/química , Imunoensaio/métodos , Nanopartículas/química , Análise Serial de Proteínas/métodos , Mapeamento de Interação de Proteínas/métodos , Compostos de Sulfidrila/química , Teste de Materiais , Impressão Molecular/métodos , Nanopartículas/ultraestrutura
13.
Nano Lett ; 11(11): 4997-5001, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21985491

RESUMO

Seamless embedment of electronic devices in biological systems is expected to add the outstanding computing power, memory, and speed of electronics to the biochemical toolbox of nature. Such amalgamation requires transduction of electronic signals into biochemical cues that affect cells. Inspired by biology, where pathways are directed by molecular recognition, we propose and demonstrate a generic electrical-to-biological transducer comprising a two-state electronic antigen and a chimeric cell receptor engineered to bind the antigen exclusively in its "on" state. T-cells expressing these receptors remain inactivated with the antigen in its "off" state. Switching the antigen to its "on" state by an electrical signal leads to its recognition by the T-cells and correspondingly to cell activation.


Assuntos
Receptores de Antígenos de Linfócitos T/efeitos da radiação , Anticorpos de Cadeia Única/efeitos da radiação , Linfócitos T/efeitos da radiação , Células Cultivadas , Campos Eletromagnéticos , Humanos , Receptores de Antígenos de Linfócitos T/química , Anticorpos de Cadeia Única/química , Linfócitos T/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...