Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 30(44): 14870-82, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21048146

RESUMO

Mechanisms underlying chronic pain that develops after spinal cord injury (SCI) are incompletely understood. Most research on SCI pain mechanisms has focused on neuronal alterations within pain pathways at spinal and supraspinal levels associated with inflammation and glial activation. These events might also impact central processes of primary sensory neurons, triggering in nociceptors a hyperexcitable state and spontaneous activity (SA) that drive behavioral hypersensitivity and pain. SCI can sensitize peripheral fibers of nociceptors and promote peripheral SA, but whether these effects are driven by extrinsic alterations in surrounding tissue or are intrinsic to the nociceptor, and whether similar SA occurs in nociceptors in vivo are unknown. We show that small DRG neurons from rats (Rattus norvegicus) receiving thoracic spinal injury 3 d to 8 months earlier and recorded 1 d after dissociation exhibit an elevated incidence of SA coupled with soma hyperexcitability compared with untreated and sham-treated groups. SA incidence was greatest in lumbar DRG neurons (57%) and least in cervical neurons (28%), and failed to decline over 8 months. Many sampled SA neurons were capsaicin sensitive and/or bound the nociceptive marker, isolectin B4. This intrinsic SA state was correlated with increased behavioral responsiveness to mechanical and thermal stimulation of sites below and above the injury level. Recordings from C- and Aδ-fibers revealed SCI-induced SA generated in or near the somata of the neurons in vivo. SCI promotes the entry of primary nociceptors into a chronic hyperexcitable-SA state that may provide a useful therapeutic target in some forms of persistent pain.


Assuntos
Potenciais de Ação/fisiologia , Gânglios Espinais/fisiologia , Nociceptores/fisiologia , Dor/fisiopatologia , Células Receptoras Sensoriais/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Comportamento Animal/fisiologia , Células Cultivadas , Doença Crônica , Modelos Animais de Doenças , Feminino , Gânglios Espinais/citologia , Masculino , Nociceptores/citologia , Dor/etiologia , Medição da Dor/métodos , Estimulação Física/efeitos adversos , Estimulação Física/métodos , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/citologia , Traumatismos da Medula Espinal/complicações
2.
J Neurophysiol ; 101(3): 1351-60, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19144743

RESUMO

Learning and memory depend on neuronal alterations induced by electrical activity. Most examples of activity-dependent plasticity, as well as adaptive responses to neuronal injury, have been linked explicitly or implicitly to induction by Ca(2+) signals produced by depolarization. Indeed, transient Ca(2+) signals are commonly assumed to be the only effective transducers of depolarization into adaptive neuronal responses. Nevertheless, Ca(2+)-independent depolarization-induced signals might also trigger plastic changes. Establishing the existence of such signals is a challenge because procedures that eliminate Ca(2+) transients also impair neuronal viability and tolerance to cellular stress. We have taken advantage of nociceptive sensory neurons in the marine snail Aplysia, which exhibit unusual tolerance to extreme reduction of extracellular and intracellular free Ca(2+) levels. The axons of these neurons exhibit a depolarization-induced memory-like hyperexcitability that lasts a day or longer and depends on local protein synthesis for induction. Here we show that transient localized depolarization of these axons in an excised nerve-ganglion preparation or in dissociated cell culture can induce short- and intermediate-term axonal hyperexcitability as well as long-term protein synthesis-dependent hyperexcitability under conditions in which Ca(2+) entry is prevented (by bathing in nominally Ca(2+) -free solutions containing EGTA) and detectable Ca(2+) transients are eliminated (by adding BAPTA-AM). Disruption of Ca(2+) release from intracellular stores by pretreatment with thapsigargin also failed to affect induction of axonal hyperexcitability. These findings suggest that unrecognized Ca(2+)-independent signals exist that can transduce intense depolarization into adaptive cellular responses during neuronal injury, prolonged high-frequency activity, or other sustained depolarizing events.


Assuntos
Axônios/fisiologia , Cálcio/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Aplysia/citologia , Axônios/efeitos dos fármacos , Biofísica , Calcimicina/farmacologia , Quelantes/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Estimulação Elétrica/métodos , Gânglios dos Invertebrados/fisiologia , Técnicas In Vitro , Ionóforos/farmacologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Cloreto de Potássio/farmacologia , Células Receptoras Sensoriais/citologia , Fatores de Tempo
3.
J Neurosci Res ; 81(6): 805-16, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16049977

RESUMO

Nerve cells may survive or die after axonal or dendritic transection. After neurite transection near (<50 mum) the cell body of Fura-2-loaded B 104 neuroblastoma (rat brain-derived) cells, the somal calcium concentration (SCC) undergoes a three-phase transient change: a rapid (0-0.15-min post-transection [PT]) rise phase, followed by an early (0.15--1.5-min PT) rapid decay phase, and succeeded by a late (1.5-60-min PT) slower decay phase that restores SCC to preinjury levels. The SCC in a critical interval (1.5-12.5 min PT) of the third transient phase correlates with cell fate, i.e., most transected cells that exclude dye (restore a barrier) and die have a significantly higher (P<0.005) SCC in this critical interval than do transected cells that exclude dye and survive at 24-hr PT. Loading BAPTA (chelation of somal Ca(2+)) before, but not after, the critical interval increases the percentage of cells that survive compared to that of cells transected without BAPTA loading. Furthermore, most transected cells that die despite successful barrier restoration exhibit characteristics consistent with apoptosis initiated during the critical interval of the SCC, including caspase activation and plasmalemmal phosphatidylserine translocation. These data suggest that decreased cell survival for injuries near the soma is due to Ca(2+)-initiated apoptosis during the critical interval of the third phase of the SCC transient. (c) 2005 Wiley-Liss, Inc.


Assuntos
Sinalização do Cálcio/fisiologia , Neuritos/fisiologia , Animais , Apoptose/fisiologia , Axotomia , Inibidores de Caspase , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Sobrevivência Celular/fisiologia , Quelantes/farmacologia , Meios de Cultura , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Inibidores Enzimáticos/farmacologia , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Fosfatidilserinas/metabolismo , Ratos , Soluções
4.
J Neurobiol ; 60(2): 137-53, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15266646

RESUMO

We report that cell survival after neurite transection in a mammalian neuronal model (cultured B104 cells) critically depends on somal [Ca2+]i, a novel result that reconciles separate long-standing observations that somal survival decreases with more-proximal axonal transections and that increased somal Ca2+ is cytotoxic. Using fluorescence microscopy, we demonstrate that extracellular Ca2+ at the site of plasmalemmal transection is necessary to form a plasmalemmal barrier, and that other divalent ions (Ba2+, Mg2+) do not play a major role. We also show that extracellular Ca2+, rather than injury per se, initiates the formation of a plasmalemmal barrier and that a transient increase in somal [Ca2+]i significantly decreases the percentage of cells that survive neurite transection. Furthermore, we show that the increased somal [Ca2+]i and decreased cell survival following proximal transections are not due to less frequent or slower plasmalemmal sealing or Ca2+ entry through plasmalemmal Na+ and Ca2+ channels. Rather, the increased somal [Ca2+]i and lethality of proximal neurite injuries may be due to the decreased path length/increased diameter for Ca2+ entering the transection site to reach the soma. A ryanodine block of Ca2+ release from internal stores before transection has no effect on cell survival; however, a ryanodine- or thapsigargin-induced buildup of somal [Ca2+]i before transection markedly reduces cell survival, suggesting a minor involvement of Ca2+-induced release from internal stores. Finally, we show that cell survival following proximal injuries can be enhanced by increasing intracellular Ca2+ buffering capacity with BAPTA to prevent the increase in somal [Ca2+]i.


Assuntos
Cálcio/metabolismo , Ácido Egtázico/análogos & derivados , Líquido Intracelular/metabolismo , Neuritos/fisiologia , Neurônios/fisiologia , Traumatismos do Sistema Nervoso/patologia , Animais , Cádmio/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Quelantes/farmacologia , Interações Medicamentosas , Ácido Egtázico/farmacologia , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/metabolismo , Líquido Intracelular/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Neuroblastoma , Neurônios/efeitos dos fármacos , Potássio/farmacologia , Ratos , Rianodina/farmacologia , Tapsigargina/farmacologia , Fatores de Tempo
5.
J Neurosci Res ; 74(4): 541-51, 2003 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-14598298

RESUMO

Cultured mammalian PC12 or B104 cells do not instantaneously restore a plasmalemmal barrier (seal) after neurite transection, as measured using fluorescent dye probes of various sizes and saline solutions with different [Ca(2+)](o). Rather, transected cells gradually (from 15 to 60 min postseverance) exclude probes (dye molecules) of progressively smaller size. Furthermore, an inhibitor (calpeptin) of a Ca(2+)-activated cysteine protease (calpain) and antibodies or toxins to a Ca(2+)-regulated protein (synaptotagmin) and other membrane fusion proteins (syntaxin and synaptobrevin) inhibit plasmalemmal sealing. These data obtained using molecular probes on mammalian cell lines are consistent with previous data on invertebrate giant axons indicating that Ca(2+) plays many roles in the formation, accumulation, and fusion/interaction of vesicles gradually forming a seal at a site of plasmalemmal damage.


Assuntos
Proteínas de Ligação ao Cálcio , Cálcio/metabolismo , Membrana Celular/metabolismo , Fusão de Membrana/fisiologia , Regeneração Nervosa/fisiologia , Neuritos/metabolismo , Animais , Axotomia , Calpaína/antagonistas & inibidores , Calpaína/efeitos dos fármacos , Calpaína/metabolismo , Membrana Celular/efeitos dos fármacos , Corantes/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/farmacologia , Líquido Extracelular/metabolismo , Fusão de Membrana/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neuritos/efeitos dos fármacos , Neuroblastoma , Células PC12 , Proteínas Qa-SNARE , Proteínas R-SNARE , Ratos , Sinaptotagminas , Células Tumorais Cultivadas
6.
News Physiol Sci ; 18: 115-8, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12750447

RESUMO

Ca(2+)-induced endocytotic vesicles undergo protein-mediated interactions to restore a selectively permeable barrier and propagated action potentials in severed invertebrate giant axons. Similar barrier-restoration phenomena observed in cultured mammalian cells with transected neurites suggest that cellular/molecular mechanisms that repair plasmalemmal damage are phylogenetically conserved.


Assuntos
Axônios/metabolismo , Axotomia , Regeneração Nervosa/fisiologia , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...