Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi Pharm J ; 32(6): 102098, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38774811

RESUMO

The traditional method of producing medicine using the "one-size fits all" model is becoming a major issue for pharmaceutical manufacturers due to its inability to produce customizable medicines for individuals' needs. Three-dimensional (3D) printing is a new disruptive technology that offers many benefits to the pharmaceutical industry by revolutionizing the way pharmaceuticals are developed and manufactured. 3D printing technology enables the on-demand production of personalized medicine with tailored dosage, shape and release characteristics. Despite the lack of clear regulatory guidance, there is substantial interest in adopting 3D printing technology in the large-scale manufacturing of medicine. This review aims to evaluate the research efforts of 3D printing technology in the Middle East and North Africa (MENA) region, with a particular emphasis on pharmaceutical research and development. Our analysis indicates an upsurge in the overall research activity of 3D printing technology but there is limited progress in pharmaceuticals research and development. While the MENA region still lags, there is evidence of the regional interest in expanding the 3D printing technology applications in different sectors including pharmaceuticals. 3D printing holds great promise for pharmaceutical development within the MENA region and its advancement will require a strong collaboration between academic researchers and industry partners in parallel with drafting detailed guidelines from regulatory authorities.

2.
Saudi Pharm J ; 26(2): 151-161, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30166911

RESUMO

Vaginal fluconazole (FLZ) prolonged release tablets containing chitosan in physical blends with other bioadhesive polymers were designed. Chitosan was mixed with hydroxypropyl methylcellulose (HPMC), guar gum or sodium carboxymethyl cellulose (NaCMC) at different ratios and directly compressed into tablets. In-vitro release profiles of FLZ were monitored at pH 4.8. Compressing chitosan with HPMC at different ratios slowed FLZ release, however, time for 80% drug release (T80) did not exceed 4.3 h for the slowest formulation (F11). Adding of chitosan to guar gum at 1:2 ratio (F3) showed delayed release with T80 17.4 h while, in presence of PVP at 1:2:1 ratio (F5), T80 was 8.8 h. A blend of chitosan and NaCMC at 1:2 ratio (F15) showed prolonged drug release with T80 11.16 h. Formulations F5 and F15 showed fair physical characteristics for the powder and tablets and were subjected to further studies. Fast swelling was observed for F15 that reached 1160.53 ±â€¯13.02% in 4 h with 2 h bioadhesion time to mouse peritoneum membrane compared with 458.83 ±â€¯7.09% swelling with bioadhesion time exceeding 24 h for F5. Extensive swelling of F15 could indicate possible dehydration effect on vaginal mucosa. Meanwhile, antifungal activity against C. albicans was significantly high for F5.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...