Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(1): e0114285, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25617894

RESUMO

Cocaine has a short half-life of only about an hour but its effects, predominantly on the central nervous system (CNS), are fairly long-lasting. Of all cells within the CNS, astrocytes may be the first to display cocaine toxicity owing to their relative abundance in the brain. Cocaine entry could trigger several early response changes that adversely affect their survival, and inhibiting these changes could conversely increase their rate of survival. In order to identify these changes and the minimal concentrations of cocaine that can elicit them in vitro, rat C6 astroglia-like cells were treated with cocaine (2-4 mM for 1h) and assayed for alterations in gross cell morphology, cytoplasmic vacuolation, viability, reactive oxygen species (ROS) generation, glutathione (GSH) levels, cell membrane integrity, F-actin cytoskeleton, and histone methylation. We report here that all of the above identified features are significantly altered by cocaine, and may collectively represent the key pathology underlying acute toxicity-mediated death of astroglia-like cells. Pretreatment of the cells with the clinically available antioxidant N-acetyl cysteine (NAC, 5 mM for 30 min) inhibited these changes during subsequent application of cocaine and mitigated cocaine-induced toxicity. Despite repeated cocaine exposure, NAC pretreated cells remained highly viable and post NAC treatment also increased viability of cocaine treated cells to a smaller yet significant level. We show further that this alleviation by NAC is mediated through an increase in GSH levels in the cells. These findings, coupled with the fact that astrocytes maintain neuronal integrity, suggest that compounds which target and mitigate these early toxic changes in astrocytes could have a potentially broad therapeutic role in cocaine-induced CNS damage.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Astrócitos/efeitos dos fármacos , Cocaína/toxicidade , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Glutationa/metabolismo , Histonas/efeitos dos fármacos , Metilação , Ratos , Espécies Reativas de Oxigênio/metabolismo
2.
Mol Med Rep ; 10(5): 2287-92, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25174449

RESUMO

Cocaine is a powerful addictive drug, widely abused in most Western countries. It easily reaches various domains within and outside of the central nervous system (CNS), and triggers varying levels of cellular toxicity. No pharmacological treatment is available to alleviate cocaine-induced toxicity in the cells without side-effects. Here, we discerned the role of milk thistle (MT) seed extract against cocaine toxicity. First, we investigated acute cytotoxicity induced by treatment with 2, 3 and 4 mM cocaine for 1 h in astroglial, liver and kidney cells in vitro, and then in living shrimp larvae in vivo. We showed that astroglial cells are more sensitive to cocaine than liver, kidney cells or larvae. Cocaine exposure disrupted the general architecture of astroglial cells, induced vacuolation, decreased cell viability, and depleted the glutathione (GSH) level. These changes may represent the underlying pathology of cocaine in the astrocytes. By contrast, MT pretreatment (200 µg/ml) for 30 min sustained the cell morphological features and increased both cell viability and the GSH level. Besides its protective effects, the MT extract was revealed to be non-toxic to astroglial cells, and displayed high free-radical scavenging activity. The results from this study suggest that enhanced GSH level underlies cell protection, and indicate that compounds that promote GSH synthesis in the cells may be beneficial against cocaine toxicity.


Assuntos
Cocaína/toxicidade , Sequestradores de Radicais Livres/farmacologia , Drogas Ilícitas/toxicidade , Extratos Vegetais/farmacologia , Sementes/química , Silybum marianum/química , Animais , Artemia , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cães , Sequestradores de Radicais Livres/química , Glutationa/metabolismo , Células Madin Darby de Rim Canino , Extratos Vegetais/química , Ratos , Vacúolos/efeitos dos fármacos
3.
Int J Mol Med ; 32(2): 497-502, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23708443

RESUMO

Astroglial cells are one of the most abundant cell types in the mammalian brain functioning in neuronal survival and in maintenance of fundamental patterns of circuitry. To date, no study has been conducted regarding the short-term impact of cocaine on these cells in cultures. The present study aimed to investigate acute cocaine (1 h) treatment on cell viability in rat C6 astroglial cells. In addition, the potential effect of N-acetyl-L-cysteine (NAC) against cocaine-induced toxicity was studied. It was observed that 1 h of acute cocaine exposure at 2, 3 and 4 mM caused a dose-dependent decrease in cell viability with an LC50 of 2.857 mM. Furthermore, cocaine treatment caused a decrease in glutathione (GSH) levels in the cells. It was found that cocaine did not exhibit pro-oxidant activity during its exposure to cells. Acute cocaine exposure did not induce nitric oxide (NO) release in the cells. A 5-point (1-5 mM) dose-response curve of NAC clearly indicated no adverse effect on astroglial cell viability. Pretreatment of cells with 5 mM NAC for 30 min, followed by its discard, and exposure to cocaine (2-4 mM) for 1 h protected cells against cytotoxicity by 90%. Treatment of cells with NAC-cocaine mixture rendered 100% protection. Further investigations revealed that the protection by NAC was through the increased GSH levels in the cells. Our results indicate that decreased GSH levels may represent one of the underlying pathologies of cell death and that antioxidant compounds which increase the GSH production could protect against cocaine-induced toxicity by promoting a pro-survival role in astroglial cells.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Astrócitos/efeitos dos fármacos , Cocaína/toxicidade , Oxidantes/toxicidade , Animais , Astrócitos/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sequestradores de Radicais Livres/farmacologia , Glutationa/biossíntese , Óxido Nítrico/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...