Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fetal Diagn Ther ; 44(4): 277-284, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29689556

RESUMO

PURPOSE: To evaluate placental function and perfusion in a rat model of preeclampsia infused with L-nitro-arginine methyl ester (L-NAME) by dynamic contrast-enhanced (DCE) MRI using gadolinium chelates. METHODS: Pregnant female Sprague-Dawley rats were fitted on embryonic day 16 (E16) with subcutaneous osmotic minipumps loaded to deliver, continuously, L-NAME (50 mg/day per rat; case group) or saline solution (control group). DCE MRI was performed on E19 using gadolinium chelates and a 4.7-T MRI apparatus for small animals. Quantitative analysis was performed using an image software program: placental blood flow (perfusion in mL/min/100 mL of placenta) and fractional volume of the maternal vascular placental compartment (ratio between the placental blood volume and the placental volume, Vb in %) were calculated by compartmental analysis. RESULTS: A total of 176 placentas (27 rats) were analyzed by DCE MRI (97 cases and 79 controls). The model was effective, inducing intrauterine growth retardation, as there was a significant difference between the two groups for placental weight (p < 0.01), fetal weight (p = 0.019), and fetal length (p < 0.01). There was no significant difference in placental perfusion between the L-NAME and control groups (140.1 ± 74.1 vs. 148.9 ± 97.4, respectively; p = 0.496). There was a significant difference between the L-NAME and control groups for Vb (53 ± 12.9 vs. 46.7 ± 9%, respectively; p < 0.01). CONCLUSION: In the L-NAME preeclampsia model, placental perfusion is normal and the fractional blood volume is increased, suggesting that preeclampsia is not always expressed as a result of decreased placental perfusion. This highlights the usefulness of MRI for investigating the physiopathology of preeclampsia.


Assuntos
Placenta/fisiopatologia , Pré-Eclâmpsia/fisiopatologia , Animais , Volume Sanguíneo , Feminino , Imageamento por Ressonância Magnética , Placenta/irrigação sanguínea , Gravidez , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional
2.
Ultrasound Med Biol ; 42(4): 924-30, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26746382

RESUMO

Our objective was to determine if supersonic shear wave elastography (SSWE) can detect changes in stiffness of a breast cancer model under therapy. A human invasive carcinoma was implanted in 22 mice. Eleven were treated with an anti-angiogenic therapy and 11 with glucose for 24 d. Tumor volume and stiffness were assessed during 2 wk before treatment and 0, 7, 12, 20 and 24 d after the start of therapy using SSWE. Pathology was assessed after 12 and 24 d of treatment. We found that response to therapy was associated with early softening of treated tumors only, resulting in a significant difference from non-treated tumors after 12 d of treatment (p = 0.03). On pathology, large areas of necrosis were observed at 12 d in treated tumors. Although treatment was still effective, treated tumors subsequently stiffened during a second phase of the treatment (days 12-24), with a small amount of necrosis observed on pathology on day 24. In conclusion, SSWE was able to measure changes in the stiffness of tumors in response to anti-cancer treatment. However, stiffness changes associated with good response to treatment may change over time, and increased stiffness may also reflect therapy efficacy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/fisiopatologia , Monitoramento de Medicamentos/métodos , Técnicas de Imagem por Elasticidade/métodos , Reconhecimento Automatizado de Padrão/métodos , Inibidores da Angiogênese/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Neoplasias da Mama/diagnóstico por imagem , Linhagem Celular Tumoral , Módulo de Elasticidade/efeitos dos fármacos , Feminino , Humanos , Aumento da Imagem/métodos , Camundongos , Camundongos Nus , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento
3.
Magn Reson Med ; 72(3): 841-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24123113

RESUMO

PURPOSE: To determine whether functional imaging using MRI and fibered confocal fluorescence microscopy (FCFM) could be used to monitor cell therapy by mural progenitor cells (MPC). METHODS: Fifty mice bearing TC1 murine xenograft tumors were allocated into: control (n = 17), sham (phosphate buffer saline, n = 16), and MPC-treated (MPC, n = 17) groups. MRI was performed before (D0 ) and 7 days (D7 ) after injection measuring tumor size, R2 * under air, oxygen, and carbogen using blood oxygen level dependent (BOLD) and f (fraction linked to microcirculation), D* (perfusion related coefficient) and Dr (restricted diffusion coefficient) using diffusion-weighted sequences based on the IVIM (intravoxel incoherent motion) method. FCFM was performed at D7 measuring "index leakage" (capillary permeability). RESULTS: Tumor growth was significantly slowed down in the MPC-treated animals (P = 0.002) on D7 . R2 *air significantly decreased in controls between D0 and D7 (P = 0.03), reflecting a decrease in tumor oxygenation. ΔR2 *O2CO2 significantly increased in controls between D0 and D7 (P = 0.01) reflecting loss of vessel response to carbogen. D* significantly decreased in controls between D0 and D7 (P = 0.03). Finally, "index leakage" was lower in the MPC-treated tumors (P = 0,009). CONCLUSION: Treatment by MPC resulted in slowing down of tumor growth, capillary permeability decrease, and stabilization of tumor angiogenesis.


Assuntos
Carcinoma de Células Escamosas/patologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Microscopia Confocal/métodos , Transplante de Células-Tronco/métodos , Animais , Células Cultivadas , Compostos Férricos , Xenoenxertos , Humanos , Camundongos , Microcirculação , Nanopartículas , Coloração e Rotulagem , Cordão Umbilical/citologia
4.
J Vis Exp ; (79)2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24056503

RESUMO

Fibered confocal fluorescence in vivo imaging with a fiber optic bundle uses the same principle as fluorescent confocal microscopy. It can excite fluorescent in situ elements through the optical fibers, and then record some of the emitted photons, via the same optical fibers. The light source is a laser that sends the exciting light through an element within the fiber bundle and as it scans over the sample, recreates an image pixel by pixel. As this scan is very fast, by combining it with dedicated image processing software, images in real time with a frequency of 12 frames/sec can be obtained. We developed a technique to quantitatively characterize capillary morphology and function, using a confocal fluorescence videomicroscopy device. The first step in our experiment was to record 5 sec movies in the four quadrants of the tumor to visualize the capillary network. All movies were processed using software (ImageCell, Mauna Kea Technology, Paris France) that performs an automated segmentation of vessels around a chosen diameter (10 µm in our case). Thus, we could quantify the 'functional capillary density', which is the ratio between the total vessel area and the total area of the image. This parameter was a surrogate marker for microvascular density, usually measured using pathology tools. The second step was to record movies of the tumor over 20 min to quantify leakage of the macromolecular contrast agent through the capillary wall into the interstitium. By measuring the ratio of signal intensity in the interstitium over that in the vessels, an 'index leakage' was obtained, acting as a surrogate marker for capillary permeability.


Assuntos
Microscopia Confocal/métodos , Microscopia de Vídeo/métodos , Neoplasias Experimentais/irrigação sanguínea , Animais , Meios de Contraste/química , Dextranos/química , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/química , Camundongos , Microscopia Confocal/instrumentação , Microscopia de Vídeo/instrumentação , Neovascularização Patológica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...