Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Retrovirology ; 21(1): 11, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38945996

RESUMO

BACKGROUND: Since the introduction of combination antiretroviral therapy (cART) the brain has become an important human immunodeficiency virus (HIV) reservoir due to the relatively low penetration of many drugs utilized in cART into the central nervous system (CNS). Given the inherent limitations of directly assessing acute HIV infection in the brains of people living with HIV (PLWH), animal models, such as humanized mouse models, offer the most effective means of studying the effects of different viral strains and their impact on HIV infection in the CNS. To evaluate CNS pathology during HIV-1 infection in the humanized bone marrow/liver/thymus (BLT) mouse model, a histological analysis was conducted on five CNS regions, including the frontal cortex, hippocampus, striatum, cerebellum, and spinal cord, to delineate the neuronal (MAP2ab, NeuN) and neuroinflammatory (GFAP, Iba-1) changes induced by two viral strains after 2 weeks and 8 weeks post-infection. RESULTS: Findings reveal HIV-infected human cells in the brain of HIV-infected BLT mice, demonstrating HIV neuroinvasion. Further, both viral strains, HIV-1JR-CSF and HIV-1CH040, induced neuronal injury and astrogliosis across all CNS regions following HIV infection at both time points, as demonstrated by decreases in MAP2ab and increases in GFAP fluorescence signal, respectively. Importantly, infection with HIV-1JR-CSF had more prominent effects on neuronal health in specific CNS regions compared to HIV-1CH040 infection, with decreasing number of NeuN+ neurons, specifically in the frontal cortex. On the other hand, infection with HIV-1CH040 demonstrated more prominent effects on neuroinflammation, assessed by an increase in GFAP signal and/or an increase in number of Iba-1+ microglia, across CNS regions. CONCLUSION: These findings demonstrate that CNS pathology is widespread during acute HIV infection. However, neuronal loss and the magnitude of neuroinflammation in the CNS is strain dependent indicating that strains of HIV cause differential CNS pathologies.


Assuntos
Modelos Animais de Doenças , Infecções por HIV , HIV-1 , Doenças Neuroinflamatórias , Neurônios , Animais , Camundongos , Infecções por HIV/virologia , Infecções por HIV/patologia , Infecções por HIV/complicações , Humanos , Neurônios/virologia , Neurônios/patologia , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/virologia , Encéfalo/patologia , Encéfalo/virologia , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas dos Microfilamentos/metabolismo
2.
Front Immunol ; 15: 1374301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835765

RESUMO

Background: Human immunodeficiency virus (HIV) affects nearly 40 million people globally, with roughly 80% of all people living with HIV receiving antiretroviral therapy. Antiretroviral treatment suppresses viral load in peripheral tissues but does not effectively penetrate the blood-brain barrier. Thus, viral reservoirs persist in the central nervous system and continue to produce low levels of inflammatory factors and early viral proteins, including the transactivator of transcription (Tat). HIV Tat is known to contribute to chronic neuroinflammation and synaptodendritic damage, which is associated with the development of cognitive, motor, and/or mood problems, collectively known as HIV-associated neurocognitive disorders (HAND). Cannabinoid anti-inflammatory effects are well documented, but therapeutic utility of cannabis remains limited due to its psychotropic effects, including alterations within brain regions encoding reward processing and motivation, such as the nucleus accumbens. Alternatively, inhibiting monoacylglycerol lipase (MAGL) has demonstrated therapeutic potential through interactions with the endocannabinoid system. Methods: The present study utilized a reward-related operant behavioral task to quantify motivated behavior in female Tat transgenic mice treated with vehicle or MAGL inhibitor MJN110 (1 mg/kg). Brain tissue was collected to assess dendritic injury and neuroinflammatory profiles, including dendritic microtubule-associated protein (MAP2ab) intensity, microglia density, microglia morphology, astrocyte density, astrocytic interleukin-1ß (IL-1ß) colocalization, and various lipid mediators. Results: No significant behavioral differences were observed; however, MJN110 protected against Tat-induced dendritic injury by significantly upregulating MAP2ab intensity in the nucleus accumbens and in the infralimbic cortex of Tat(+) mice. No or only minor effects were noted for Iba-1+ microglia density and/or microglia morphology. Further, Tat increased GFAP+ astrocyte density in the infralimbic cortex and GFAP+ astrocytic IL-1ß colocalization in the nucleus accumbens, with MJN110 significantly reducing these measures in Tat(+) subjects. Lastly, selected HETE-related inflammatory lipid mediators in the striatum were downregulated by chronic MJN110 treatment. Conclusions: These findings demonstrate anti-inflammatory and neuroprotective properties of MJN110 without cannabimimetic behavioral effects and suggest a promising alternative to cannabis for managing neuroinflammation.


Assuntos
HIV-1 , Monoacilglicerol Lipases , Doenças Neuroinflamatórias , Animais , Feminino , Humanos , Camundongos , Complexo AIDS Demência/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/virologia , Encéfalo/patologia , Modelos Animais de Doenças , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/etiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
3.
PLoS One ; 19(6): e0305868, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38913661

RESUMO

The cannabinoid receptor type 1 (CB1R) is a promising therapeutic target for various neurodegenerative diseases, including HIV-1-associated neurocognitive disorder (HAND). However, the therapeutic potential of CB1R by direct activation is limited due to its psychoactive side effects. Therefore, research has focused on indirectly activating the CB1R by utilizing positive allosteric modulators (PAMs). Studies have shown that CB1R PAMs (ZCZ011 and GAT211) are effective in mouse models of Huntington's disease and neuropathic pain, and hence, we assess the therapeutic potential of ZCZ011 in a well-established mouse model of neuroHIV. The current study investigates the effect of chronic ZCZ011 treatment (14 days) on various behavioral paradigms and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. Chronic ZCZ011 treatment (10 mg/kg) did not alter body mass, locomotor activity, or anxiety-like behavior regardless of sex or genotype. However, differential effects were noted in hot plate latency, motor coordination, and recognition memory in female mice only, with ZCZ011 treatment increasing hot plate latency and improving motor coordination and recognition memory. Only minor effects or no alterations were seen in the endocannabinoid system and related lipids except in the cerebellum, where the effect of ZCZ011 was more pronounced in female mice. Moreover, AEA and PEA levels in the cerebellum were positively correlated with improved motor coordination in female mice. In summary, these findings indicate that chronic ZCZ011 treatment has differential effects on antinociception, motor coordination, and memory, based on sex and HIV-1 Tat expression, making CB1R PAMs potential treatment options for HAND without the psychoactive side effects.


Assuntos
Endocanabinoides , Camundongos Transgênicos , Receptor CB1 de Canabinoide , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Animais , Feminino , Masculino , Endocanabinoides/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Camundongos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , HIV-1/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Modelos Animais de Doenças
4.
Front Neurosci ; 18: 1358555, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505774

RESUMO

Background: Some evidence suggests that cannabidiol (CBD) has potential to help alleviate HIV symptoms due to its antioxidant and anti-inflammatory properties. Here we examined acute CBD effects on various behaviors and the endocannabinoid system in HIV Tat transgenic mice. Methods: Tat transgenic mice (female/male) were injected with CBD (3, 10, 30 mg/kg) and assessed for antinociception, activity, coordination, anxiety-like behavior, and recognition memory. Brains were taken to quantify endocannabinoids, cannabinoid receptors, and cannabinoid catabolic enzymes. Additionally, CBD and metabolite 7-hydroxy-CBD were quantified in the plasma and cortex. Results: Tat decreased supraspinal-related nociception and locomotion. CBD and sex had little to no effects on any of the behavioral measures. For the endocannabinoid system male sex was associated with elevated concentration of the proinflammatory metabolite arachidonic acid in various CNS regions, including the cerebellum that also showed higher FAAH expression levels for Tat(+) males. GPR55 expression levels in the striatum and cerebellum were higher for females compared to males. CBD metabolism was altered by sex and Tat expression. Conclusion: Findings indicate that acute CBD effects are not altered by HIV Tat, and acute CBD has no to minimal effects on behavior and the endocannabinoid system.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38394322

RESUMO

Background: Evidence suggests that monoacylglycerol lipase (MAGL) inhibitors can potentially treat HIV symptoms by increasing the concentration of 2-arachidonoylglycerol (2-AG). We examined a selective MAGL inhibitor ABX1431 in the context of neuroHIV. Methods: To assess the effects of ABX1431, we conducted in vitro and in vivo studies. In vitro calcium imaging on frontal cortex neuronal cultures was performed to evaluate the role of ABX1431 (10, 30, 100 nM) on transactivator of transcription (Tat)-induced neuronal hyperexcitability. Following in vitro experiments, in vivo experiments were performed using Tat transgenic male mice. Mice were treated with 4 mg/kg ABX1431 and assessed for antinociception using tail-flick and hot plate assays followed by locomotor activity. After the behavioral experiments, their brains were harvested to quantify endocannabinoids (eCB) and related lipids through mass spectrometry, and cannabinoid type-1 and -2 receptors (CB1R and CB2R) were quantified through western blot. Results: In vitro studies revealed that adding Tat directly to the neuronal cultures significantly increased intracellular calcium concentration, which ABX1431 completely reversed at all concentrations. Preincubating the cultures with CB1R and CB2R antagonists showed that ABX1431 exhibited its effects partially through CB1R. In vivo studies demonstrated that acute ABX1431 increased overall total distance traveled and speed of mice regardless of their genotype. Mass spectrometry and western blot analyses revealed differential effects on the eCB system based on Tat expression. The 2-AG levels were significantly upregulated following ABX1431 treatment in the striatum and spinal cord. Arachidonic acid (AA) was also upregulated in the striatum of vehicle-treated Tat(+) mice. No changes were noted in CB1R expression levels; however, CB2R levels were increased in ABX1431-treated Tat(-) mice only. Conclusion: Findings indicate that ABX1431 has potential neuroprotective effects in vitro partially mediated through CB1R. Acute treatment of ABX1431 in vivo shows antinociceptive effects, and seems to alter locomotor activity, with upregulating 2-AG levels in the striatum and spinal cord.

6.
Brain Res ; 1822: 148638, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858856

RESUMO

Cannabis use is highly prevalent especially among people living with HIV (PLWH). Activation of the anti-inflammatory and neuroprotective endocannabinoid system by phytocannabinoids, i.e. Δ9-tetrahydrocannabinol (THC), has been proposed to reduce HIV symptoms. However, THC's effects on HIV-related memory deficits are unclear. Using HIV-1 Tat transgenic mice, the current study investigates acute THC effects on various behavioral outcomes and the endocannabinoid system. For the rodent tetrad model, THC doses (1, 3, 10 mg/kg) induced known antinociceptive effects, with Tat induction increasing antinociceptive THC effects at 3 and 10 mg/kg doses. Only minor or no effects were noted for acute THC on body temperature, locomotor activity, and coordination. Increased anxiety-like behavior was found for females compared to males, but acute THC had no effect on anxiety. Object recognition memory was diminished by acute THC in Tat(-) females but not Tat(+) females, without affecting males. The endocannabinoid system and related lipids were not affected by acute THC, except for THC-induced decreases in CB1R protein expression levels in the spinal cord of Tat(-) mice. Female sex and Tat induction was associated with elevated 2-AG, AEA, AA, CB1R, CB2R, FAAH and/or MAGL expression in various brain regions. Further, AEA levels in the prefrontal cortex of Tat(+) females were negatively associated with object recognition memory. Overall, findings indicate that acute THC exerts differential effects on antinociception and memory, dependent on sex and HIV Tat expression, potentially in relation to an altered endocannabinoid system, which may be of relevance in view of potential cannabis-based treatment options for PLWH.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Camundongos , Animais , Masculino , Feminino , Endocanabinoides/metabolismo , Dronabinol/farmacologia , HIV-1/metabolismo , Agonistas de Receptores de Canabinoides/farmacologia , Camundongos Transgênicos , Analgésicos/farmacologia
7.
NeuroImmune Pharm Ther ; 2(1): 71-79, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-37027536

RESUMO

Background: We recently reveal that anti-CD4 autoantibodies contribute to blunted CD4+ T cell reconstitution in HIV+ individuals on antiretroviral therapy (ART). Cocaine use is common among HIV+ individuals and is associated with accelerated disease progression. However, the mechanisms underlying cocaine-induced immune perturbations remain obscure. Methods: We evaluated plasma levels of anti-CD4 IgG and markers of microbial translocation, as well as B-cell gene expression profiles and activation in HIV+ chronic cocaine users and non-users on suppressive ART, as well as uninfected controls. Plasma purified anti-CD4 IgGs were assessed for antibody-dependent cytotoxicity (ADCC). Results: HIV+ cocaine users had increased plasma levels of anti-CD4 IgGs, lipopolysaccharide (LPS), and soluble CD14 (sCD14) versus non-users. An inverse correlation was observed in cocaine users, but not non-drug users. Anti-CD4 IgGs from HIV+ cocaine users mediated CD4+ T cell death through ADCC in vitro. B cells from HIV+ cocaine users exhibited activation signaling pathways and activation (cycling and TLR4 expression) related to microbial translocation versus non-users. Conclusions: This study improves our understanding of cocaine associated B cell perturbations and immune failure and the new appreciation for autoreactive B cells as novel therapeutic targets.

8.
Cells ; 11(5)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269478

RESUMO

(1) Background. The endocannabinoid (eCB) system, which regulates physiological and cognitive processes, presents a promising therapeutic target for treating HIV-associated neurocognitive disorders (HAND). Here we examine whether upregulating eCB tone has potential protective effects against HIV-1 Tat (a key HIV transactivator of transcription) protein-induced alterations in synaptic activity. (2) Methods. Whole-cell patch-clamp recordings were performed to assess inhibitory GABAergic neurotransmission in prefrontal cortex slices of Tat transgenic male and female mice, in the presence and absence of the fatty acid amide hydrolase (FAAH) enzyme inhibitor PF3845. Western blot and mass spectrometry analyses assessed alterations of cannabinoid receptor and enzyme protein expression as well as endogenous ligands, respectively, to determine the impact of Tat exposure on the eCB system. (3) Results. GABAergic activity was significantly altered upon Tat exposure based on sex, whereas the effectiveness of PF3845 to suppress GABAergic activity in Tat transgenic mice was not altered by Tat or sex and involved CB1R-related mechanisms that depended on calcium signaling. Additionally, our data indicated sex-dependent changes for AEA and related non-eCB lipids based on Tat induction. (4) Conclusion. Results highlight sex- and/or Tat-dependent alterations of GABAergic activity and eCB signaling in the prefrontal cortex of Tat transgenic mice and further increase our understanding about the role of FAAH inhibition in neuroHIV.


Assuntos
Canabinoides , Infecções por HIV , Amidoidrolases , Animais , Canabinoides/farmacologia , Endocanabinoides/metabolismo , Inibidores Enzimáticos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Piperidinas , Piridinas , Receptores de Canabinoides , Transmissão Sináptica , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
9.
J Neuroimmune Pharmacol ; 17(1-2): 305-317, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34448131

RESUMO

Cocaine use is commonly associated with increased chronic systemic inflammation. However, the drivers for cocaine use-mediated systemic inflammation are not fully understood. In the current study, we recruited individuals with cocaine use disorder and healthy individuals who did not use cocaine and collected paired saliva and blood samples. The saliva samples were used to assess the oral microbiome, and the plasma samples were evaluated for 33 cytokines and chemokines. Cocaine users exhibited decreased saliva microbial diversities compared to non-users. Streptococcus was the only increased genus in the saliva from cocaine users, whereas several genera were decreased in cocaine users compared to non-users. Notably, cocaine users exhibited increased plasma levels of several monocyte activation markers, including monocyte chemoattractant protein (MCP)-4, macrophage inflammatory protein (MIP)-3α, macrophage-derived chemokine (MDC), and thymus and activation-regulated chemokine (TARC), all of which were correlated with increased saliva levels of three Streptococcus species. Furthermore, treatment with Streptococcus or its lipoteichoic acid preferentially activated primary human monocytes to produce proinflammatory cytokines and chemokines, such as MIP-3α and TARC, in vitro compared to controls. However, monocytes failed to produce these chemokines after exposure to cocaine or cocaine plus bacteria compared to medium or bacteria alone. This study revealed that chronic cocaine use-associated inflammation in the blood may result from increased oral Streptococcus and its effects on myeloid cell activation, but does not result from cocaine directly.


Assuntos
Monócitos , Streptococcus , Humanos
10.
Curr Psychopharmacol ; 11(2): 1-8, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36860288

RESUMO

Background: Cocaine affects not only the central nervous system, but also systemic immunity. The role of cocaine in gut mucosal integrity is not fully understood. Methods: Here we evaluated the effect of cocaine use on gut endothelial permeability and system inflammation in rats that self-administered cocaine or saline and in humans using immunohistochemistry, qPCR, ELISA, and Transepithelial/transendothelial electrical resistance (TEER). Results: Cocaine administration maintained intact and undisturbed intestinal mucosal structures, increased tight junction claudin 1 and 2 mRNA expression, and decreased plasma TNF-α levels, compared to the control group, at the end of study in rats. Further, cocaine treatment decreased gut endothelial permeability in a dose-dependent manner in human epithelial Caco-2 cells in vitro. Consistently, chronic cocaine users exhibited decreased plasma levels of TNF-α compared with non-drug users in vivo. However, plasma IL-6 levels were similar between cocaine use and control groups both in humans and rats in vivo. Conclusions: Our results from both human and rat studies in vivo and in vitro suggest that cocaine use may exert a protective effect on the integrity of gut mucosa and suppresses plasma TNF-α levels. This study may provide information on some beneficial effects of cocaine use on gut endothelial cells integrity and systemic inflammation.

11.
J Neuroimmune Pharmacol ; 16(4): 706-717, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34826061

RESUMO

In spring of 2021, the Society on NeuroImmune Pharmacology (SNIP) organized a virtual workshop on the coronavirus disease 2019 (COVID-19). The daylong event's fourth and final symposium, "Well-being and reflections," offered a glimpse at the pandemic's impact on the lives of our scientists and educators. This manuscript includes a brief summary of the symposium, a transcription of our incoming president Dr. Santosh Kumar's lecture, titled "Intervention and improved well-being of basic science researchers during the COVID-19 era: a case study," and the panel discussion that followed, "Reflection and sharing," featuring Drs. Jean M. Bidlack, Sylvia Fitting, Santhi Gorantla, Maria Cecilia G. Marcondes, Loyda M. Melendez, and Ilker K. Sariyer. The conclusion of this manuscript includes comments from SNIP's president Dr. Sulie L. Chang and our Chief Editor, Dr. Howard E. Gendelman. Drs. Sowmya Yelamanchili and Jeymohan Joseph co-chaired the symposium.


Assuntos
COVID-19 , Humanos , Pandemias , SARS-CoV-2
12.
EBioMedicine ; 74: 103701, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34826801

RESUMO

BACKGROUND: Little is known about chronic cannabis smoking-associated oral microbiome and its effects on central nervous system (CNS) functions. METHODS: In the current study, we have analyzed the saliva microbiome in individuals who chronically smoked cannabis with cannabis use disorder (n = 16) and in non-smoking controls (n = 27). The saliva microbiome was analyzed using microbial 16S rRNA sequencing. To investigate the function of cannabis use-associated oral microbiome, mice were orally inoculated with live Actinomyces meyeri, Actinomyces odontolyticus, or Neisseria elongata twice per week for six months, which mimicked human conditions. FINDINGS: We found that cannabis smoking in humans was associated with oral microbial dysbiosis. The most increased oral bacteria were Streptococcus and Actinomyces genus and the most decreased bacteria were Neisseria genus in chronic cannabis smokers compared to those in non-smokers. Among the distinct species bacteria in cannabis smokers, the enrichment of Actinomyces meyeri was inversely associated with the age of first cannabis smoking. Strikingly, oral exposure of Actinomyces meyeri, an oral pathobiont, but not the other two control bacteria, decreased global activity, increased macrophage infiltration, and increased ß-amyloid 42 protein production in the mouse brains. INTERPRETATION: This is the first study to reveal that long-term oral cannabis exposure is associated oral enrichment of Actinomyces meyeri and its contributions to CNS abnormalities.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Bactérias/classificação , Encéfalo/metabolismo , Macrófagos/metabolismo , Fumar Maconha/psicologia , Saliva/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Estudos de Casos e Controles , Linhagem Celular , DNA Bacteriano/genética , DNA Ribossômico/genética , Modelos Animais de Doenças , Feminino , Humanos , Fumar Maconha/imunologia , Fumar Maconha/metabolismo , Camundongos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
Front Neurol ; 12: 651272, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484091

RESUMO

While current therapeutic strategies for people living with human immunodeficiency virus type 1 (HIV-1) suppress virus replication peripherally, viral proteins such as transactivator of transcription (Tat) enter the central nervous system early upon infection and contribute to chronic inflammatory conditions even alongside antiretroviral treatment. As demand grows for supplemental strategies to combat virus-associated pathology presenting frequently as HIV-associated neurocognitive disorders (HAND), the present study aimed to characterize the potential utility of inhibiting monoacylglycerol lipase (MAGL) activity to increase inhibitory activity at cannabinoid receptor-type 1 receptors through upregulation of 2-arachidonoylglycerol (2-AG) and downregulation of its degradation into proinflammatory metabolite arachidonic acid (AA). The MAGL inhibitor MJN110 significantly reduced intracellular calcium and increased dendritic branching complexity in Tat-treated primary frontal cortex neuron cultures. Chronic MJN110 administration in vivo increased 2-AG levels in the prefrontal cortex (PFC) and striatum across Tat(+) and Tat(-) groups and restored PFC N-arachidonoylethanolamine (AEA) levels in Tat(+) subjects. While Tat expression significantly increased rate of reward-related behavioral task acquisition in a novel discriminative stimulus learning and cognitive flexibility assay, MJN110 altered reversal acquisition specifically in Tat(+) mice to rates indistinguishable from Tat(-) controls. Collectively, our results suggest a neuroprotective role of MAGL inhibition in reducing neuronal hyperexcitability, restoring dendritic arborization complexity, and mitigating neurocognitive alterations driven by viral proteins associated with latent HIV-1 infection.

14.
Exp Neurol ; 341: 113699, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33736974

RESUMO

Human immunodeficiency virus type 1 (HIV-1) is known to provoke microglial immune responses which likely play a paramount role in the development of chronic neuroinflammatory conditions and neuronal damage related to HIV-1 associated neurocognitive disorders (HAND). In particular, HIV-1 Tat protein is a proinflammatory neurotoxin which predisposes neurons to synaptodendritic injury. Drugs targeting the degradative enzymes of endogenous cannabinoids have shown promise in reducing inflammation with minimal side effects in rodent models. Considering that markers of neuroinflammation can predict the extent of neuronal injury in HAND patients, we evaluated the neurotoxic effect of HIV-1 Tat-exposed microglia following blockade of fatty acid amid hydrolyze (FAAH), a catabolic enzyme responsible for degradation of endocannabinoids, e.g. anandamide (AEA). In the present study, cultured murine microglia were incubated with Tat and/or a FAAH inhibitor (PF3845). After 24 h, cells were imaged for morphological analysis and microglial conditioned media (MCM) was collected. Frontal cortex neuron cultures (DIV 7-11) were then exposed to MCM, and neurotoxicity was assessed via live cell calcium imaging and staining of actin positive dendritic structures. Results demonstrate a strong attenuation of microglial responses to Tat by PF3845 pretreatment, which is indicated by 1) microglial changes in morphology to a less proinflammatory phenotype using fractal analysis, 2) a decrease in release of neurotoxic cytokines/chemokines (MCP-1/CCL2) and matrix metalloproteinases (MMPs; MMP-9) using ELISA/multiplex assays, and 3) enhanced production of endocannabinoids (AEA) using LC/MS/MS. Additionally, PF3845's effects on Tat-induced microglial-mediated neurotoxicity, decreased dysregulation of neuronal intracellular calcium and prevented the loss of actin-positive staining and punctate structure in frontal cortex neuron cultures. Interestingly, these observed neuroprotective effects appeared to be independent of cannabinoid receptor activity (CB1R & CB2R). We found that a purported GPR18 antagonist, CID-85469571, blocked the neuroprotective effects of PF3845 in all experiments. Collectively, these experiments increase understanding of the role of FAAH inhibition and Tat in mediating microglial neurotoxicity in the HAND condition.


Assuntos
Amidoidrolases/antagonistas & inibidores , Doenças Neurodegenerativas/prevenção & controle , Neuroproteção/fisiologia , Fármacos Neuroprotetores/antagonistas & inibidores , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Produtos do Gene tat do Vírus da Imunodeficiência Humana/toxicidade , Amidoidrolases/deficiência , Amidoidrolases/genética , Animais , Animais Recém-Nascidos , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/metabolismo , Piperidinas/farmacologia , Piridinas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo
15.
Neurosci Lett ; 750: 135717, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33587986

RESUMO

In the era of combined antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) is considered a chronic disease with an inflammatory component that specifically targets the brain and causes a high prevalence of HIV-1-associated neurocognitive disorders (HAND). The endocannabinoid (eCB) system has attracted interest as a target for treatment of neurodegenerative disorders, due to the potential anti-inflammatory and neuroprotective properties of cannabinoids, including its potential therapeutic use in HIV-1 neuropathogenesis. In this review, we summarize what is currently known about the structural and functional changes of the eCB system under conditions of HAND. This will be followed by summarizing the current clinical and preclinical findings on the effects of cannabis use and cannabinoids in the context of HIV-1 infection, with specifically focusing on viral load, cognition, inflammation, and neuroprotection. Lastly, we present some potential future directions to better understand the involvement of the eCB system and the role that cannabis use and cannabinoids play in neuroHIV.


Assuntos
Complexo AIDS Demência/tratamento farmacológico , Canabinoides/uso terapêutico , Complexo AIDS Demência/metabolismo , Animais , Canabinoides/metabolismo , Humanos , Receptor CB2 de Canabinoide/metabolismo
16.
J Neuroinflammation ; 17(1): 345, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208151

RESUMO

BACKGROUND: Human immunodeficiency virus type-1 (HIV-1) and opiates cause long-term inflammatory insult to the central nervous system (CNS) and worsen disease progression and HIV-1-related neuropathology. The combination of these proinflammatory factors reflects a devastating problem as opioids have high abuse liability and continue to be prescribed for certain patients experiencing HIV-1-related pain. METHODS: Here, we examined the impact of chronic (3-month) HIV-1 transactivator of transcription (Tat) exposure to short-term (8-day), escalating morphine in HIV-1 Tat transgenic mice that express the HIV-1 Tat protein in a GFAP promoter-regulated, doxycycline (DOX)-inducible manner. In addition to assessing morphine-induced tolerance in nociceptive responses organized at spinal (i.e., tail-flick) and supraspinal (i.e., hot-plate) levels, we evaluated neuroinflammation via positron emission tomography (PET) imaging using the [18F]-PBR111 ligand, immunohistochemistry, and cytokine analyses. Further, we examined endocannabinoid (eCB) levels, related non-eCB lipids, and amino acids via mass spectrometry.  RESULTS: Tat-expressing [Tat(+)] transgenic mice displayed antinociceptive tolerance in the tail withdrawal and hot-plate assays compared to control mice lacking Tat [Tat(-)]. This tolerance was accompanied by morphine-dependent increases in Iba-1 ± 3-nitrotryosine immunoreactive microglia, and alterations in pro- and anti-inflammatory cytokines, and chemokines in the spinal cord and striatum, while increases in neuroinflammation were absent by PET imaging of [18F]-PBR111 uptake. Tat and morphine exposure differentially affected eCB levels, non-eCB lipids, and specific amino acids in a region-dependent manner. In the striatum, non-eCB lipids were significantly increased by short-term, escalating morphine exposure, including peroxisome proliferator activator receptor alpha (PPAR-α) ligands N-oleoyl ethanolamide (OEA) and N-palmitoyl ethanolamide (PEA), as well as the amino acids phenylalanine and proline. In the spinal cord, Tat exposure increased amino acids leucine and valine, while morphine decreased levels of tyrosine and valine but did not affect eCBs or non-eCB lipids. CONCLUSION: Overall results demonstrate that 3 months of Tat exposure increased morphine tolerance and potentially innate immune tolerance evidenced by reductions in specific cytokines (e.g., IL-1α, IL-12p40) and microglial reactivity. In contrast, short-term, escalating morphine exposure acted as a secondary stressor revealing an allostatic shift in CNS baseline inflammatory responsiveness from sustained Tat exposure.


Assuntos
Aminoácidos/metabolismo , Endocanabinoides/metabolismo , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos/fisiologia , Morfina/administração & dosagem , Neuroproteção/fisiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/biossíntese , Analgésicos Opioides/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Mediadores da Inflamação/antagonistas & inibidores , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroproteção/efeitos dos fármacos , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
17.
J Neuroimmune Pharmacol ; 15(4): 584-627, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32876803

RESUMO

With the current national opioid crisis, it is critical to examine the mechanisms underlying pathophysiologic interactions between human immunodeficiency virus (HIV) and opioids in the central nervous system (CNS). Recent advances in experimental models, methodology, and our understanding of disease processes at the molecular and cellular levels reveal opioid-HIV interactions with increasing clarity. However, despite the substantial new insight, the unique impact of opioids on the severity, progression, and prognosis of neuroHIV and HIV-associated neurocognitive disorders (HAND) are not fully understood. In this review, we explore, in detail, what is currently known about mechanisms underlying opioid interactions with HIV, with emphasis on individual HIV-1-expressed gene products at the molecular, cellular and systems levels. Furthermore, we review preclinical and clinical studies with a focus on key considerations when addressing questions of whether opioid-HIV interactive pathogenesis results in unique structural or functional deficits not seen with either disease alone. These considerations include, understanding the combined consequences of HIV-1 genetic variants, host variants, and µ-opioid receptor (MOR) and HIV chemokine co-receptor interactions on the comorbidity. Lastly, we present topics that need to be considered in the future to better understand the unique contributions of opioids to the pathophysiology of neuroHIV. Graphical Abstract Blood-brain barrier and the neurovascular unit. With HIV and opiate co-exposure (represented below the dotted line), there is breakdown of tight junction proteins and increased leakage of paracellular compounds into the brain. Despite this, opiate exposure selectively increases the expression of some efflux transporters, thereby restricting brain penetration of specific drugs.


Assuntos
Complexo AIDS Demência/complicações , COVID-19 , Infecções por HIV/complicações , Epidemia de Opioides , Transtornos Relacionados ao Uso de Opioides/epidemiologia , HIV-1/imunologia , Humanos
18.
J Neuroimmune Pharmacol ; 14(4): 661-678, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31372820

RESUMO

In the era of combined antiretroviral therapy, HIV-1 infected individuals are living longer lives; however, longevity is met with an increasing number of HIV-1 associated neurocognitive disorders (HAND) diagnoses. The transactivator of transcription (Tat) is known to mediate the neurotoxic effects in HAND by acting directly on neurons and also indirectly via its actions on glia. The Go/No-Go (GNG) task was used to examine HAND in the Tat transgenic mouse model. The GNG task involves subjects discriminating between two stimuli sets in order to determine whether or not to inhibit a previously trained response. Data reveal inhibitory control deficits in female Tat(+) mice (p = .048) and an upregulation of cannabinoid type 1 receptors (CB1R) in the infralimbic (IL) cortex in the same female Tat(+) group (p < .05). A significant negative correlation was noted between inhibitory control and IL CB1R expression (r = -.543, p = .045), with CB1R expression predicting 30% of the variance of inhibitory control (R2 = .295, p = .045). Furthermore, there was a significant increase in spontaneous excitatory postsynaptic current (sEPSC) frequencies in Tat(+) compared to Tat(-) mice (p = .008, across sexes). The increase in sEPSC frequency was significantly attenuated by bath application of PF3845, a fatty acid amide hydrolase (FAAH) enzyme inhibitor (p < .001). Overall, the GNG task is a viable measure to assess inhibitory control deficits in Tat transgenic mice and results suggest a potential therapeutic treatment for the observed deficits with drugs which modulate endocannabinoid enzyme activity. Graphical Abstract Results of the Go/No-Go operant conditioning task reveal inhibitory control deficits in female transgenic Tat(+) mice without significantly affecting males. The demonstrated inhibitory control deficits appear to be associated with an upregulation of cannabinoid type 1 receptors (CB1R) in the infralimbic (IL) cortex in the same female Tat(+) group.


Assuntos
Complexo AIDS Demência/metabolismo , Modelos Animais de Doenças , HIV-1 , Inibição Psicológica , Receptor CB1 de Canabinoide/biossíntese , Produtos do Gene tat do Vírus da Imunodeficiência Humana/biossíntese , Complexo AIDS Demência/genética , Complexo AIDS Demência/psicologia , Animais , Feminino , Lobo Límbico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos Neurocognitivos/genética , Transtornos Neurocognitivos/metabolismo , Desempenho Psicomotor/fisiologia , Receptor CB1 de Canabinoide/genética , Regulação para Cima/fisiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
19.
Sci Rep ; 9(1): 8367, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182728

RESUMO

Progesterone plays a protective role in preventing inflammation and preterm delivery during pregnancy. However, the mechanism involved is unknown. Microbial product translocation from a permeable mucosa is demonstrated as a driver of inflammation. To study the mechanism of the protective role of progesterone during pregnancy, we investigated the effect of physiologic concentrations of progesterone on tight junction protein occludin expression and human gut permeability in vitro and systemic microbial translocation in pregnant women in vivo. Plasma bacterial lipopolysaccharide (LPS), a representative marker of in vivo systemic microbial translocation was measured. We found that plasma LPS levels were significantly decreased during 24 to 28 weeks of gestation compared to 8 to 12 weeks of gestation. Moreover, plasma LPS levels were negatively correlated with plasma progesterone levels but positively correlated with plasma tumor necrosis factor-alpha (TNF-α) levels at 8 to 12 weeks of gestation but not at 24 to 28 weeks of gestation. Progesterone treatment increased intestinal trans-epithelial electrical resistance (TEER) in primary human colon tissues and Caco-2 cells in vitro through upregulating tight junction protein occludin expression. Furthermore, progesterone exhibited an inhibitory effect on nuclear factor kappa B (NF-κB) activation following LPS stimulation in Caco-2 cells. These results reveal a novel mechanism that progesterone may play an important role in decreasing mucosal permeability, systemic microbial translocation, and inflammation during pregnancy.


Assuntos
Inflamação/genética , Ocludina/genética , Nascimento Prematuro/genética , Progesterona/genética , Adulto , Células CACO-2 , Feminino , Microbioma Gastrointestinal , Regulação da Expressão Gênica/genética , Humanos , Inflamação/sangue , Inflamação/microbiologia , Inflamação/patologia , Mucosa Intestinal/microbiologia , Lipopolissacarídeos/sangue , Permeabilidade , Gravidez , Nascimento Prematuro/sangue , Nascimento Prematuro/microbiologia , Nascimento Prematuro/patologia , Progesterona/metabolismo , Junções Íntimas/genética , Junções Íntimas/microbiologia , Fator de Necrose Tumoral alfa/sangue
20.
Neuropharmacology ; 141: 55-65, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30114402

RESUMO

The HIV-1 transactivator of transcription (Tat) is a neurotoxin involved in the pathogenesis of HIV-1 associated neurocognitive disorders (HAND). The neurotoxic effects of Tat are mediated directly via AMPA/NMDA receptor activity and indirectly through neuroinflammatory signaling in glia. Emerging strategies in the development of neuroprotective agents involve the modulation of the endocannabinoid system. A major endocannabinoid, anandamide (N-arachidonoylethanolamine, AEA), is metabolized by fatty acid amide hydrolase (FAAH). Here we demonstrate using a murine prefrontal cortex primary culture model that the inhibition of FAAH, using PF3845, attenuates Tat-mediated increases in intracellular calcium, neuronal death, and dendritic degeneration via cannabinoid receptors (CB1R and CB2R). Live cell imaging was used to assess Tat-mediated increases in [Ca2+]i, which was significantly reduced by PF3845. A time-lapse assay revealed that Tat potentiates cell death while PF3845 blocks this effect. Additionally PF3845 blocked the Tat-mediated increase in activated caspase-3 (apoptotic marker) positive neurons. Dendritic degeneration was characterized by analyzing stained dendritic processes using Imaris and Tat was found to significantly decrease the size of processes while PF3845 inhibited this effect. Incubation with CB1R and CB2R antagonists (SR141716A and AM630) revealed that PF3845-mediated calcium effects were dependent on CB1R, while reduced neuronal death and degeneration was CB2R-mediated. PF3845 application led to increased levels of AEA, suggesting the observed effects are likely a result of increased endocannabinoid signaling at CB1R/CB2R. Our findings suggest that modulation of the endogenous cannabinoid system through inhibition of FAAH may be beneficial in treatment of HAND.


Assuntos
Síndrome da Imunodeficiência Adquirida/complicações , Síndrome da Imunodeficiência Adquirida/patologia , Amidoidrolases/antagonistas & inibidores , HIV-1/patogenicidade , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Produtos do Gene tat do Vírus da Imunodeficiência Humana/toxicidade , Síndrome da Imunodeficiência Adquirida/enzimologia , Animais , Ácidos Araquidônicos , Cálcio/metabolismo , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Endocanabinoides/farmacologia , Indóis/farmacologia , Camundongos , Degeneração Neural/patologia , Piperidinas/antagonistas & inibidores , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas , Córtex Pré-Frontal/enzimologia , Córtex Pré-Frontal/metabolismo , Cultura Primária de Células , Piridinas/antagonistas & inibidores , Piridinas/farmacologia , Rimonabanto/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA