Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
CienciaUAT ; 17(2): 181-196, ene.-jun. 2023. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1447828

RESUMO

RESUMEN La evapotranspiración de referencia (ETo) es una variable hidrológica de gran importancia en el manejo del riego. Su estimación se realiza con la ecuación de Penman-Montieth (PM), que requiere de muchas variables meteorológicas, las cuales, a veces, no se encuentran disponibles. Dado que la ETo es una variable no lineal y compleja, en los últimos años han surgido métodos alternativos para su estimación, como las redes neuronales artificiales (RNA). El objetivo del presente trabajo fue estimar la evapotranspiración de referencia (ETo) usando la ecuación de Penman-Montieth, a fin de desarrollar modelos de redes neuronales artificiales (RNA) que permitan predecir la ETo en regiones con información climatológica limitada, y su vez comparar el desempeño de tres modelos de RNA: FFNN, ERNN y NARX. Se utilizó información diaria durante el periodo 1 de enero de 2007 al 31 de diciembre de 2018, de las estaciones meteorológicas ENP8 y ENP4 de la CDMX. Se realizó un análisis de correlación y el análisis de sensibilidad de Garson para estudiar 2 casos (red estática FFNN y redes dinámicas: ERNN y NARX) usando 3 modelos de RNA: 1) RNA con 6 entradas: radiación solar (Rad), temperatura máxima y mínima (Tmax, Tmin), humedad relativa máxima y mínima (HRmax, HRmin) y velocidad del viento (u); y 2) RNA con 2 entradas (Rad y Tmax). La variable de salida fue la ETo calculada con la ecuación de PM. En todos los casos, las 3 RNA fueron muy parecidas, la diferencia más notable es que las redes dinámicas (ERNN y NARX) requieren de menor número de iteraciones para llegar al desempeño óptimo. Las RNA entrenadas, únicamente con Rad y Tmax como entradas, fueron capaces de predecir la ETo en el largo plazo, durante 440 d, en otra estación meteorológica cercana (ENP4), con eficiencias mayores al 90 %.


ABSTRACT Reference evapotranspiration (ETo) is a hydrological variable of great importance in irrigation management. Its estimation is carried out with the Penman-Montieth (PM) equation that requires many meteorological variables and that are sometimes not available. Since ETo is a nonlinear and complex variable, in recent years alternative methods have emerged for its estimation, such as artificial neural networks (ANN). The objective of this work was to estimate the reference evapotranspiration (ETo) using the Penman-Montieth equation, in order to develop artificial neural network (ANN) models that allow ETo to be predicted in regions with limited climatological information, and in turn to compare the performance of three RNA models: FFNN, ERNN and NARX. Daily informtion was used during the January 1, 2007 to December 31, 2018 period, for the ENP8 and ENP4 meteorological stations in Mexico city. Based on the correlation analysis and the Garson sensitivity analysis, 2 cases were studied for the 3 ANN models: 1) ANN with 6 inputs: solar radiation (Rad), maximum and minimum temperature (Tmax, Tmin), maximum and minimum relative humidity (RHmax, RHmin), and wind speed (u), and 2) RNA with 2 inputs (Rad and Tmax). The output variable was the ETo, calculated with the PM equation. In all cases, the performance of the 3 ANNs was very similar. The most notable difference is that the dynamic networks (ERNN and NARX) require fewer iterations to achieve the optimum performance. ANNs trained only with radiation and maximum temperature as inputs were able to predict a long-term ETo for 440 at another nearby meteorological station (ENP4), with efficiencies greater than 90 %.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA