Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 549: 24-41, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38484835

RESUMO

Accurate movements of the upper limb require the integration of various forms of sensory feedback (e.g., visual and postural information). The influence of these different sensory modalities on reaching movements has been largely studied by assessing endpoint errors after selectively perturbing sensory estimates of hand location. These studies have demonstrated that both vision and proprioception make key contributions in determining the reach endpoint. However, their influence on motor output throughout movement remains unclear. Here we used separate perturbations of posture and visual information to dissociate their effects on reaching dynamics and temporal force profiles during point-to-point reaching movements. We tested human subjects (N = 32) and found that vision and posture modulate select aspects of reaching dynamics. Specifically, altering arm posture influences the relationship between temporal force patterns and the motion-state variables of hand position and acceleration, whereas dissociating visual feedback influences the relationship between force patterns and the motion-state variables of velocity and acceleration. Next, we examined the extent these baseline motion-state relationships influence motor adaptation based on perturbations of movement dynamics. We trained subjects using a velocity-dependent force-field to probe the extent arm posture-dependent influences persisted after exposure to a motion-state dependent perturbation. Changes in the temporal force profiles due to variations in arm posture were not reduced by adaptation to novel movement dynamics, but persisted throughout learning. These results suggest that vision and posture differentially influence the internal estimation of limb state throughout movement and play distinct roles in forming the response to external perturbations during movement.


Assuntos
Adaptação Fisiológica , Retroalimentação Sensorial , Movimento , Postura , Desempenho Psicomotor , Humanos , Masculino , Retroalimentação Sensorial/fisiologia , Feminino , Movimento/fisiologia , Postura/fisiologia , Adaptação Fisiológica/fisiologia , Adulto , Adulto Jovem , Desempenho Psicomotor/fisiologia , Fenômenos Biomecânicos/fisiologia , Braço/fisiologia , Propriocepção/fisiologia , Percepção Visual/fisiologia
2.
Sci Rep ; 14(1): 4563, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402326

RESUMO

In recent years, commercially available dexterous upper limb prostheses for children have begun to emerge. These devices derive control signals from surface electromyography (measure of affected muscle electrical activity, sEMG) to drive a variety of grasping motions. However, the ability for children with congenital upper limb deficiency to actuate their affected muscles to achieve naturalistic prosthetic control is not well understood, as compared to adults or children with acquired hand loss. To address this gap, we collected sEMG data from 9 congenital one-handed participants ages 8-20 years as they envisioned and attempted to perform 10 different movements with their missing hands. Seven sEMG electrodes were adhered circumferentially around the participant's affected and unaffected limbs and participants mirrored the attempted missing hand motions with their intact side. To analyze the collected sEMG data, we used time and frequency domain analyses. We found that for the majority of participants, attempted hand movements produced detectable and consistent muscle activity, and the capacity to achieve this was not dissimilar across the affected and unaffected sides. These data suggest that children with congenital hand absence retain a degree of control over their affected muscles, which has important implications for translating and refining advanced prosthetic control technologies for children.


Assuntos
Cotovelo , Mãos , Adulto , Criança , Humanos , Mãos/fisiologia , Eletromiografia , Extremidade Superior , Músculos , Movimento/fisiologia
3.
J Neuroeng Rehabil ; 21(1): 13, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263225

RESUMO

Children with a unilateral congenital below elbow deficiency (UCBED) have one typical upper limb and one that lacks a hand, ending below the elbow at the proximal/mid forearm. UCBED is an isolated condition, and affected children otherwise develop normal sensorimotor control. Unlike adults with upper limb absence, the majority of whom have an acquired loss, children with UCBED never developed a hand, so their residual muscles have never actuated an intact limb. Their ability to purposefully modulate affected muscle activity is often assumed to be limited, and this assumption has influenced prosthetic design and prescription practices for this population as many modern devices derive control signals from affected muscle activity. To better understand the motor capabilities of the affected muscles, we used ultrasound imaging to study 6 children with UCBED. We examined the extent to which subjects activate their affected muscles when performing mirrored movements with their typical and missing hands. We demonstrate that all subjects could intentionally and consistently enact at least five distinct muscle patterns when attempting different missing hand movements (e.g., power grasp) and found similar performance across affected and typically developed limbs. These results suggest that although participants had never actuated the missing hand they could distinctively and consistently activate the residual muscle patterns associated with actions on the unaffected side. These findings indicate that motor control still develops in the absence of the normal effector, and can serve as a guide for developing prostheses that leverage the full extent of these children's motor control capabilities.


Assuntos
Articulação do Cotovelo , Cotovelo , Adulto , Criança , Humanos , Músculos , Extremidade Superior , Mãos
4.
Prosthet Orthot Int ; 46(3): 267-273, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35085179

RESUMO

Many complex factors affect whether a child with a congenital upper limb deficiency will wear a prosthetic limb. Ultimately, for a child to wear and use their prosthesis, it must facilitate the effective performance of daily tasks and promote healthy social interactions. Although numerous pediatric devices are available, most provide a single open-close grasp (if a grasping function is available at all) and often offer nonanthropomorphic appearances, falling short of meeting these criteria. In this narrative review, we provide a critical assessment of the state of upper limb prostheses for children. We summarize literature using quality of life measures and categorize driving factors affecting prosthesis use into two main groupings: psychosocial and physical functioning. We define psychosocial functioning as factors related to social inclusion/exclusion, emotional function, independence, and school functioning. Physical functioning is defined as factors associated with the physical use of a prosthesis. The reviewed literature suggests that psychosocial domains of quality of life may be influenced by a congenital limb deficiency, and currently available prostheses provide little benefit in the physical functioning domains. Finally, we discuss technological advancements in adult prostheses that have yet to be leveraged for pediatric devices, including describing recently developed adult electric hands that may improve physical functioning through multiple grasping configurations and provide more hand-like cosmesis. We outline actions necessary to translate similar technologies for children and discuss further strategies to begin removing barriers to pediatric device adoption.


Assuntos
Membros Artificiais , Adulto , Criança , Mãos , Humanos , Desenho de Prótese , Implantação de Prótese , Qualidade de Vida , Extremidade Superior
5.
Neuroscience ; 413: 108-122, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31228588

RESUMO

One deficit associated with schizophrenia (SZ) is the reduced ability to distinguish self-caused sensations from those due to external sources. This reduced sense of agency (SoA, subjective awareness of control over one's actions) is hypothesized to result from a diminished utilization of internal monitoring signals of self-movement (i.e., efference copy) which subsequently impairs forming and utilizing sensory prediction errors (differences between the predicted and actual sensory consequences resulting from movement). Another important function of these internal monitoring signals is the facilitation of higher-order mechanisms related to motor learning and control. Current predictive-coding models of adaptation postulate that the sensory consequences of motor commands are predicted based on internal action-related information, and that ownership and control of motor behavior is modified in various contexts based on predictive processing. Here, we investigated the connections between SoA and motor adaptation. Schizophrenia patients (SZP, N=30) and non-psychiatric control subjects (HC, N=31) adapted to altered movement visual feedback and applied the motor recalibration to untested contexts (i.e., the spatial generalization). Although adaptation was similar for SZP and controls, the extent of generalization was significantly less for SZP; movement trajectories made by patients to the furthest untrained target (135o) before and after adaptation were largely indistinguishable. Interestingly, deficits in generalization were correlated with positive symptoms of psychosis in SZP (e.g., hallucinations). Generalization was also associated with measures of SoA across both SZP and HC, emphasizing the role action awareness plays in motor behavior, and suggesting that misattributing agency, even in HC, manifests in abnormal motor performance.


Assuntos
Adaptação Psicológica , Generalização Psicológica , Desempenho Psicomotor , Psicologia do Esquizofrênico , Comportamento Espacial , Percepção Visual , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atividade Motora , Rotação , Esquizofrenia/tratamento farmacológico , Percepção Espacial , Teoria da Mente
6.
J Neurophysiol ; 118(4): 2435-2447, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28768744

RESUMO

Movement adaptation in response to systematic motor perturbations exhibits distinct spatial and temporal properties. These characteristics are typically studied in isolation, leaving the interaction largely unknown. Here we examined how the temporal decay of visuomotor adaptation influences the spatial generalization of the motor recalibration. First, we quantified the extent to which adaptation decayed over time. Subjects reached to a peripheral target, and a rotation was applied to the visual feedback of the unseen motion. The retention of this adaptation over different delays (0-120 s) 1) decreased by 29.0 ± 6.8% at the longest delay and 2) was represented by a simple exponential, with a time constant of 22.5 ± 5.6 s. On the basis of this relationship we simulated how the spatial generalization of adaptation would change with delay. To test this directly, we trained additional subjects with the same perturbation and assessed transfer to 19 different locations (spaced 15° apart, symmetric around the trained location) and examined three delays (~4, 12, and 25 s). Consistent with the simulation, we found that generalization around the trained direction (±15°) significantly decreased with delay and distance, while locations >60° displayed near-constant spatiotemporal transfer. Intermediate distances (30° and 45°) showed a difference in transfer across space, but this amount was approximately constant across time. Interestingly, the decay at the trained direction was faster than that based purely on time, suggesting that the spatial transfer of adaptation is modified by concurrent passive (time dependent) and active (movement dependent) processes.NEW & NOTEWORTHY Short-term motor adaptation exhibits distinct spatial and temporal characteristics. Here we investigated the interaction of these features, utilizing a simple motor adaptation paradigm (recalibration of reaching arm movements in response to rotated visual feedback). We examined the changes in the spatial generalization of motor adaptation for different temporal manipulations and report that the spatiotemporal generalization of motor adaptation is generally local and is influenced by both passive (time dependent) and active (movement dependent) learning processes.


Assuntos
Retroalimentação Fisiológica , Generalização Psicológica , Movimento , Percepção Visual , Adulto , Braço/inervação , Braço/fisiologia , Encéfalo/fisiologia , Feminino , Humanos , Masculino , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...