Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(1): 89-96, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37939013

RESUMO

The ability to target specific tissues and to be internalized by cells is critical for successful nanoparticle-based targeted drug delivery. Here, we combined "stealthy" rod-shaped poly(2-oxazoline) (POx) nanoparticles of different lengths with a cancer marker targeting nanobody and a fluorescent cell internalization sensor via a heat-induced living crystallization-driven self-assembly (CDSA) strategy. A significant increase in association and uptake driven by nanobody-receptor interactions was observed alongside nanorod-length-dependent kinetics. Importantly, the incorporation of the internalization sensor allowed for quantitative differentiation between cell surface association and internalization of the targeted nanorods, revealing unprecedented length-dependent cellular interactions of CDSA nanorods. This study highlights the modularity and versatility of the heat-induced CDSA process and further demonstrates the potential of POx nanorods as a modular nanomedicine platform.


Assuntos
Nanopartículas , Nanotubos , Sistemas de Liberação de Medicamentos , Membrana Celular
2.
ChemSusChem ; 15(19): e202201136, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35843909

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a group of recalcitrant molecules that have been used since the 1940s in a variety of applications. They are now linked to a host of negative health outcomes and are extremely resistant to degradation under environmental conditions. Currently, membrane technologies or adsorbents are used to remediate contaminated water. These techniques are either inefficient at capturing smaller PFAS molecules, have high energy demands, or result in concentrated waste that must be incinerated at high temperatures. This Review focuses on what role metal-organic frameworks (MOFs) may play in addressing the PFAS problem. Specifically, how the unique properties of MOFs such as their well-defined pore sizes, ultra-high internal surface area, and tunable surface chemistry may be a sustainable solution for PFAS contamination.


Assuntos
Fluorocarbonos , Estruturas Metalorgânicas , Água
3.
J Colloid Interface Sci ; 587: 64-78, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33370664

RESUMO

Many applications of nanomedicines depend on the therapeutic gaining access to the interior of cells. As most proteins and nanoparticles are taken up by endocytosis, determining the properties of nanoparticles that govern uptake is essential. In this review, we examine the current approaches for measuring the cellular uptake of nanoparticles and proteins. We explore the techniques distinguishing material internalized by the cell from material bound to the surface, with a particular focus on recent advances in sensor technology. We also highlight the requirements for quantifying internalization and the pitfalls that can limit data analysis. Finally, we explore the importance of understanding recycling of internalized material back to the cell surface, and the methods that can be used to quantify this. Delivering cargo to specific subcellular locations first requires uptake. Robust techniques that can quantify this event are the critical for developing the next generation of smart, targeted, therapeutic nanoparticles.


Assuntos
Nanopartículas , Transporte Biológico , Endocitose , Nanomedicina , Proteínas
4.
Nat Commun ; 11(1): 4482, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901011

RESUMO

Intracellular trafficking governs receptor signaling, pathogenesis, immune responses and fate of nanomedicines. These processes are typically tracked by observing colocalization of fluorescent markers using confocal microscopy. However, this method is low throughput, limited by the resolution of microscopy, and can miss fleeting interactions. To address this, we developed a localization sensor composed of a quenched SNAP-tag substrate (SNAPSwitch) that can be conjugated to biomolecules using click chemistry. SNAPSwitch enables quantitative detection of trafficking to locations of interest within live cells using flow cytometry. Using SNAPSwitch, we followed the trafficking of DNA complexes from endosomes into the cytosol and nucleus. We show that antibodies against the transferrin or hyaluronan receptor are initially sorted into different compartments following endocytosis. In addition, we can resolve which side of the cellular membrane material was located. These results demonstrate SNAPSwitch is a high-throughput and broadly applicable tool to quantitatively track localization of materials in cells.


Assuntos
DNA/metabolismo , Sondas Moleculares/química , Nanopartículas/metabolismo , Proteínas/metabolismo , Animais , Transporte Biológico Ativo , Técnicas Biossensoriais/métodos , Química Click , Citometria de Fluxo , Corantes Fluorescentes , Células HEK293 , Humanos , Camundongos , Microscopia Confocal , Técnicas de Sonda Molecular , Sondas Moleculares/metabolismo , Células NIH 3T3
5.
Adv Mater ; 32(24): e2000036, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32378244

RESUMO

Engineered nano-bio cellular interfaces driven by vertical nanostructured materials are set to spur transformative progress in modulating cellular processes and interrogations. In particular, the intracellular delivery-a core concept in fundamental and translational biomedical research-holds great promise for developing novel cell therapies based on gene modification. This study demonstrates the development of a mechanotransfection platform comprising vertically aligned silicon nanotube (VA-SiNT) arrays for ex vivo gene editing. The internal hollow structure of SiNTs allows effective loading of various biomolecule cargoes; and SiNTs mediate delivery of those cargoes into GPE86 mouse embryonic fibroblasts without compromising their viability. Focused ion beam scanning electron microscopy (FIB-SEM) and confocal microscopy results demonstrate localized membrane invaginations and accumulation of caveolin-1 at the cell-NT interface, suggesting the presence of endocytic pits. Small-molecule inhibition of endocytosis suggests that active endocytic process plays a role in the intracellular delivery of cargo from SiNTs. SiNT-mediated siRNA intracellular delivery shows the capacity to reduce expression levels of F-actin binding protein (Triobp) and alter the cellular morphology of GPE86. Finally, the successful delivery of Cas9 ribonucleoprotein (RNP) to specifically target mouse Hprt gene is achieved. This NT-enhanced molecular delivery platform has strong potential to support gene editing technologies.


Assuntos
Edição de Genes/instrumentação , Espaço Intracelular/metabolismo , Nanotecnologia/instrumentação , Nanotubos/química , Silício/química , Animais , Caveolina 1/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...