Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Neurosci ; 125: 103849, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36965548

RESUMO

Drugs of abuse increase extracellular concentrations of dopamine in the nucleus accumbens (NAc), resulting in transcriptional alterations that drive long-lasting cellular and behavioral adaptations. While decades of research have focused on the transcriptional mechanisms by which drugs of abuse influence neuronal physiology and function, few studies have comprehensively defined NAc cell type heterogeneity in transcriptional responses to drugs of abuse. Here, we used single nucleus RNA-seq (snRNA-seq) to characterize the transcriptome of over 39,000 NAc cells from male and female adult Sprague-Dawley rats following acute or repeated cocaine experience. This dataset identified 16 transcriptionally distinct cell populations, including two populations of medium spiny neurons (MSNs) that express the Drd1 dopamine receptor (D1-MSNs). Critically, while both populations expressed classic marker genes of D1-MSNs, only one population exhibited a robust transcriptional response to cocaine. Validation of population-selective transcripts using RNA in situ hybridization revealed distinct spatial compartmentalization of these D1-MSN populations within the NAc. Finally, analysis of published NAc snRNA-seq datasets from non-human primates and humans demonstrated conservation of MSN subtypes across rat and higher order mammals, and further highlighted cell type-specific transcriptional differences across the NAc and broader striatum. These results highlight the utility in using snRNA-seq to characterize both cell type heterogeneity and cell type-specific responses to cocaine and provides a useful resource for cross-species comparisons of NAc cell composition.


Assuntos
Cocaína , Masculino , Feminino , Ratos , Animais , Camundongos , Cocaína/farmacologia , Neurônios Espinhosos Médios , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Ratos Sprague-Dawley , Neurônios/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Núcleo Accumbens/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mamíferos
2.
bioRxiv ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36711527

RESUMO

Drugs of abuse increase extracellular concentrations of dopamine in the nucleus accumbens (NAc), resulting in transcriptional alterations that drive long-lasting cellular and behavioral adaptations. While decades of research have focused on the transcriptional mechanisms by which drugs of abuse influence neuronal physiology and function, few studies have comprehensively defined NAc cell type heterogeneity in transcriptional responses to drugs of abuse. Here, we used single nucleus RNA-seq (snRNA-seq) to characterize the transcriptome of over 39,000 NAc cells from male and female adult Sprague-Dawley rats following acute or repeated cocaine experience. This dataset identified 16 transcriptionally distinct cell populations, including two populations of medium spiny neurons (MSNs) that express the Drd1 dopamine receptor (D1-MSNs). Critically, while both populations expressed classic marker genes of D1-MSNs, only one population exhibited a robust transcriptional response to cocaine. Validation of population-selective transcripts using RNA in situ hybridization revealed distinct spatial compartmentalization of these D1-MSN populations within the NAc. Finally, analysis of published NAc snRNA-seq datasets from non-human primates and humans demonstrated conservation of MSN subtypes across rat and higher order mammals, and further highlighted cell type-specific transcriptional differences across the NAc and broader striatum. These results highlight the utility in using snRNA-seq to characterize both cell type heterogeneity and cell type-specific responses to cocaine and provides a useful resource for cross-species comparisons of NAc cell composition.

3.
Cell Rep ; 39(1): 110616, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385745

RESUMO

The ventral tegmental area (VTA) is a complex brain region that is essential for reward function and frequently implicated in neuropsychiatric disease. While decades of research on VTA function have focused on dopamine neurons, recent evidence has identified critical roles for GABAergic and glutamatergic neurons in reward processes. Additionally, although subsets of VTA neurons express genes involved in the synthesis and transport of multiple neurotransmitters, characterization of these combinatorial populations has largely relied on low-throughput methods. To comprehensively define the molecular architecture of the VTA, we performed single-nucleus RNA sequencing on 21,600 cells from the rat VTA. Analysis of neuronal subclusters identifies selective markers for dopamine and combinatorial neurons, reveals expression profiles for receptors targeted by drugs of abuse, and demonstrates population-specific enrichment of gene sets linked to brain disorders. These results highlight the heterogeneity of the VTA and provide a resource for further exploration of VTA gene expression.


Assuntos
Neurônios Dopaminérgicos , Área Tegmentar Ventral , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Neurotransmissores/metabolismo , Ratos , Recompensa , Área Tegmentar Ventral/metabolismo
4.
Elife ; 92020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32420870

RESUMO

Convenient, efficient and fast whole-brain delivery of transgenes presents a persistent experimental challenge in neuroscience. Recent advances demonstrate whole-brain gene delivery by retro-orbital injection of virus, but slow and sparse expression and the large injection volumes required make this approach cumbersome, especially for developmental studies. We developed a novel method for efficient gene delivery across the central nervous system in neonatal mice and rats starting as early as P1 and persisting into adulthood. The method employs transverse sinus injections of 2-4 µL of AAV9 at P0. Here, we describe how to use this method to label and/or genetically manipulate cells in the neonatal rat and mouse brain. The protocol is fast, simple, can be readily adopted by any laboratory, and utilizes the widely available AAV9 capsid. The procedure is adaptable for diverse experimental applications ranging from biochemistry, anatomical and functional mapping, gene expression, silencing, and editing.


Assuntos
Encéfalo/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes , Infusões Intraventriculares , Transgenes/genética , Animais , Animais Geneticamente Modificados , Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...