Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thorac Cardiovasc Surg ; 143(4): 962-6, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22264415

RESUMO

OBJECTIVES: Ventricular remodeling after myocardial infarction begins with massive extracellular matrix deposition and resultant fibrosis. This loss of functional tissue and stiffening of myocardial elastic and contractile elements starts the vicious cycle of mechanical inefficiency, adverse remodeling, and eventual heart failure. We hypothesized that stromal cell-derived factor 1α (SDF-1α) therapy to microrevascularize ischemic myocardium would rescue salvageable peri-infarct tissue and subsequently improve myocardial elasticity. METHODS: Immediately after left anterior descending coronary artery ligation, mice were randomly assigned to receive peri-infarct injection of either saline solution or SDF-1α. After 6 weeks, animals were killed and samples were taken from the peri-infarct border zone and the infarct scar, as well as from the left ventricle of noninfarcted control mice. Determination of tissues' elastic moduli was carried out by mechanical testing in an atomic force microscope. RESULTS: SDF-1α-treated peri-infarct tissue most closely approximated the elasticity of normal ventricle and was significantly more elastic than saline-treated peri-infarct myocardium (109 ± 22.9 kPa vs 295 ± 42.3 kPa; P < .0001). Myocardial scar, the strength of which depends on matrix deposition from vasculature at the peri-infarct edge, was stiffer in SDF-1α-treated animals than in controls (804 ± 102.2 kPa vs 144 ± 27.5 kPa; P < .0001). CONCLUSIONS: Direct quantification of myocardial elastic properties demonstrates the ability of SDF-1α to re-engineer evolving myocardial infarct and peri-infarct tissues. By increasing elasticity of the ischemic and dysfunctional peri-infarct border zone and bolstering the weak, aneurysm-prone scar, SDF-1α therapy may confer a mechanical advantage to resist adverse remodeling after infarction.


Assuntos
Indutores da Angiogênese/farmacologia , Quimiocina CXCL12/farmacologia , Técnicas de Imagem por Elasticidade/métodos , Ventrículos do Coração/efeitos dos fármacos , Microscopia de Força Atômica , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Módulo de Elasticidade , Fibrose , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Masculino , Camundongos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Fatores de Tempo , Remodelação Ventricular/efeitos dos fármacos
2.
Circulation ; 124(11 Suppl): S18-26, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21911811

RESUMO

BACKGROUND: Experimentally, exogenous administration of recombinant stromal cell-derived factor-1α (SDF) enhances neovasculogenesis and cardiac function after myocardial infarction. Smaller analogs of SDF may provide translational advantages including enhanced stability and function, ease of synthesis, lower cost, and potential modulated delivery via engineered biomaterials. In this study, computational protein design was used to create a more efficient evolution of the native SDF protein. METHODS AND RESULTS: Protein structure modeling was used to engineer an SDF polypeptide analog (engineered SDF analog [ESA]) that splices the N-terminus (activation and binding) and C-terminus (extracellular stabilization) with a diproline segment designed to limit the conformational flexibility of the peptide backbone and retain the relative orientation of these segments observed in the native structure of SDF. Endothelial progenitor cells (EPCs) in ESA gradient, assayed by Boyden chamber, showed significantly increased migration compared with both SDF and control gradients. EPC receptor activation was evaluated by quantification of phosphorylated AKT, and cells treated with ESA yielded significantly greater phosphorylated AKT levels than SDF and control cells. Angiogenic growth factor assays revealed a distinct increase in angiopoietin-1 expression in the ESA- and SDF-treated hearts. In addition, CD-1 mice (n=30) underwent ligation of the left anterior descending coronary artery and peri-infarct intramyocardial injection of ESA, SDF-1α, or saline. At 2 weeks, echocardiography demonstrated a significant gain in ejection fraction, cardiac output, stroke volume, and fractional area change in mice treated with ESA compared with controls. CONCLUSIONS: Compared with native SDF, a novel engineered SDF polypeptide analog (ESA) more efficiently induces EPC migration and improves post-myocardial infarction cardiac function and thus offers a more clinically translatable neovasculogenic therapy.


Assuntos
Proteínas Angiogênicas/química , Proteínas Angiogênicas/farmacologia , Quimiocina CXCL12/química , Quimiocina CXCL12/farmacologia , Biologia Computacional/métodos , Neovascularização Fisiológica/efeitos dos fármacos , Engenharia de Proteínas/métodos , Proteínas Angiogênicas/uso terapêutico , Animais , Débito Cardíaco/efeitos dos fármacos , Débito Cardíaco/fisiologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Cultivadas , Quimiocina CXCL12/uso terapêutico , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos , Modelos Animais , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/prevenção & controle , Neovascularização Fisiológica/fisiologia , Ratos , Ratos Wistar , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Volume Sistólico/efeitos dos fármacos , Volume Sistólico/fisiologia
3.
J Appl Physiol (1985) ; 110(5): 1460-5, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21292844

RESUMO

This study evaluates a therapy for infarct modulation and acute myocardial rescue and utilizes a novel technique to measure local myocardial oxygenation in vivo. Bone marrow-derived endothelial progenitor cells (EPCs) were targeted to the heart with peri-infarct intramyocardial injection of the potent EPC chemokine stromal cell-derived factor 1α (SDF). Myocardial oxygen pressure was assessed using a noninvasive, real-time optical technique for measuring oxygen pressures within microvasculature based on the oxygen-dependent quenching of the phosphorescence of Oxyphor G3. Myocardial infarction was induced in male Wistar rats (n = 15) through left anterior descending coronary artery ligation. At the time of infarction, animals were randomized into two groups: saline control (n = 8) and treatment with SDF (n = 7). After 48 h, the animals underwent repeat thoracotomy and 20 µl of the phosphor Oxyphor G3 was injected into three areas (peri-infarct myocardium, myocardial scar, and remote left hindlimb muscle). Measurements of the oxygen distribution within the tissue were then made in vivo by applying the end of a light guide to the beating heart. Compared with controls, animals in the SDF group exhibited a significantly decreased percentage of hypoxic (defined as oxygen pressure ≤ 15.0 Torr) peri-infarct myocardium (9.7 ± 6.7% vs. 21.8 ± 11.9%, P = 0.017). The peak oxygen pressures in the peri-infarct region of the animals in the SDF group were significantly higher than the saline controls (39.5 ± 36.7 vs. 9.2 ± 8.6 Torr, P = 0.02). This strategy for targeting EPCs to vulnerable peri-infarct myocardium via the potent chemokine SDF-1α significantly decreased the degree of hypoxia in peri-infarct myocardium as measured in vivo by phosphorescence quenching. This effect could potentially mitigate the vicious cycle of myocyte death, myocardial fibrosis, progressive ventricular dilatation, and eventual heart failure seen after acute myocardial infarction.


Assuntos
Quimiocina CXCL12/uso terapêutico , Medições Luminescentes/métodos , Metaloporfirinas/farmacocinética , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Oxigênio/metabolismo , Indutores da Angiogênese/uso terapêutico , Animais , Masculino , Infarto do Miocárdio/patologia , Ratos , Ratos Wistar , Distribuição Tecidual , Resultado do Tratamento
4.
Circulation ; 122(11 Suppl): S107-17, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20837901

RESUMO

BACKGROUND: Myocardial ischemia causes cardiomyocyte death, adverse ventricular remodeling, and ventricular dysfunction. Endothelial progenitor cells (EPCs) have been shown to ameliorate this process, particularly when activated with stromal cell-derived factor-1α (SDF), known to be the most potent EPC chemokine. We hypothesized that implantation of a tissue-engineered extracellular matrix (ECM) scaffold seeded with EPCs primed with SDF could induce borderzone neovasculogenesis, prevent adverse geometric remodeling, and preserve ventricular function after myocardial infarction. METHODS AND RESULTS: Lewis rats (n=82) underwent left anterior descending artery ligation to induce myocardial infarction. EPCs were isolated, characterized, and cultured on a vitronectin/collagen scaffold and primed with SDF to generate the activated EPC matrix (EPCM). EPCM was sutured to the anterolateral left ventricular wall, which included the region of ischemia. Control animals received sutures but no EPCM. Additional groups underwent application of the ECM alone, ECM primed with SDF (ECM+SDF), and ECM seeded with EPCs but not primed with SDF (ECM+SDF). At 4 weeks, borderzone myocardial tissue demonstrated increased levels of vascular endothelial growth factor in the EPCM group. When compared to controls, Vessel density as assessed by immunohistochemical microscopy was significantly increased in the EPCM group (4.1 versus 6.2 vessels/high-powered field; P<0.001), and microvascular perfusion measured by lectin microangiography was enhanced 4-fold (0.7% versus 2.7% vessel volume/section volume; P=0.04). Comparisons to additional groups also showed a significantly improved vasculogenic response in the EPCM group. Ventricular geometry and scar fraction assessed by digital planimetric analysis of sectioned hearts exhibited significantly preserved left ventricular internal diameter (9.7 mm versus 8.6 mm; P=0.005) and decreased infarct scar formation expressed as percent of total section area (16% versus 7%; P=0.002) when compared with all other groups. In addition, EPCM animals showed a significant preservation of function as measured by echocardiography, pressure-volume conductance, and Doppler flow. CONCLUSIONS: Extracellular matrix seeded with EPCs primed with SDF induces borderzone neovasculogenesis, attenuates adverse ventricular remodeling, and preserves ventricular function after myocardial infarction.


Assuntos
Quimiocina CXCL12/farmacologia , Células Endoteliais/citologia , Matriz Extracelular , Infarto do Miocárdio/terapia , Neovascularização Fisiológica/efeitos dos fármacos , Células-Tronco/citologia , Engenharia Tecidual/métodos , Animais , Células Cultivadas , Colágeno , Modelos Animais de Doenças , Humanos , Masculino , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Ratos , Ratos Endogâmicos Lew , Disfunção Ventricular/patologia , Disfunção Ventricular/terapia , Vitronectina
5.
J Thorac Cardiovasc Surg ; 140(3): 667-76, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20363480

RESUMO

OBJECTIVE: Microvascular malperfusion after myocardial infarction leads to infarct expansion, adverse remodeling, and functional impairment. Native reparative mechanisms exist but are inadequate to vascularize ischemic myocardium. We hypothesized that a 3-dimensional human fibroblast culture (3DFC) functions as a sustained source of angiogenic cytokines, thereby augmenting native angiogenesis and limiting adverse effects of myocardial ischemia. METHODS: Lewis rats underwent ligation of the left anterior descending coronary artery to induce heart failure; experimental animals received a 3DFC scaffold to the ischemic region. Border-zone tissue was analyzed for the presence of human fibroblast surface protein, vascular endothelial growth factor, and hepatocyte growth factor. Cardiac function was assessed with echocardiography and pressure-volume conductance. Hearts underwent immunohistochemical analysis of angiogenesis by co-localization of platelet endothelial cell adhesion molecule and alpha smooth muscle actin and by digital analysis of ventricular geometry. Microvascular angiography was performed with fluorescein-labeled lectin to assess perfusion. RESULTS: Immunoblotting confirmed the presence of human fibroblast surface protein in rats receiving 3DFC, indicating survival of transplanted cells. Increased expression of vascular endothelial growth factor and hepatocyte growth factor in experimental rats confirmed elution by the 3DFC. Microvasculature expressing platelet endothelial cell adhesion molecule/alpha smooth muscle actin was increased in infarct and border-zone regions of rats receiving 3DFC. Microvascular perfusion was also improved in infarct and border-zone regions in these rats. Rats receiving 3DFC had increased wall thickness, smaller infarct area, and smaller infarct fraction. Echocardiography and pressure-volume measurements showed that cardiac function was preserved in these rats. CONCLUSIONS: Application of a bioengineered 3DFC augments native angiogenesis through delivery of angiogenic cytokines to ischemic myocardium. This yields improved microvascular perfusion, limits infarct progression and adverse remodeling, and improves ventricular function.


Assuntos
Proteínas Angiogênicas/metabolismo , Circulação Coronária , Fibroblastos/transplante , Infarto do Miocárdio/cirurgia , Neovascularização Fisiológica , Engenharia Tecidual/métodos , Alicerces Teciduais , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Ecocardiografia , Fibroblastos/metabolismo , Hemodinâmica , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Masculino , Microcirculação , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Ratos , Ratos Endogâmicos Lew , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
J Thorac Cardiovasc Surg ; 137(4): 971-7, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19327526

RESUMO

OBJECTIVE: It is generally accepted that patients who require biventricular assist device support have poorer outcomes than those requiring isolated left ventricular assist device support. However, it is unknown how the timing of biventricular assist device insertion affects outcomes. We hypothesized that planned biventricular assist device insertion improves survival compared with delayed conversion of left ventricular assist device support to biventricular assist device support. METHODS: We reviewed and compared outcomes of 266 patients undergoing left ventricular assist device or biventricular assist device placement at the University of Pennsylvania from April 1995 to June 2007. We subdivided patients receiving biventricular assist devices into planned biventricular assist device (P-BiVAD) and delayed biventricular assist device (D-BiVAD) groups based on the timing of right ventricular assist device insertion. We defined the D-BiVAD group as any failure of isolated left ventricular assist device support. RESULTS: Of 266 patients who received left ventricular assist devices, 99 (37%) required biventricular assist device support. We compared preoperative characteristics, successful bridging to transplantation, survival to hospital discharge, and Kaplan-Meier 1-year survival between the P-BiVAD (n = 71) and D-BiVAD (n = 28) groups. Preoperative comparison showed that patients who ultimately require biventricular support have similar preoperative status. Left ventricular assist device (n = 167) outcomes in all categories exceeded both P-BiVAD and D-BiVAD group outcomes. Furthermore, patients in the P-BiVAD group had superior survival to discharge than patients in the D-BiVAD group (51% vs 29%, P < .05). One-year and long-term Kaplan-Meier survival distribution confirmed this finding. There was also a trend toward improved bridging to transplantation in the P-BiVAD (n = 55) versus D-BiVAD (n = 22) groups (65% vs 45%, P = .10). CONCLUSION: When patients at high risk for failure of isolated left ventricular assist device support are identified, proceeding directly to biventricular assist device implantation is advised because early institution of biventricular support results in dramatic improvement in survival.


Assuntos
Insuficiência Cardíaca/terapia , Coração Auxiliar , Adulto , Feminino , Insuficiência Cardíaca/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Análise de Sobrevida , Fatores de Tempo , Resultado do Tratamento
7.
J Heart Lung Transplant ; 27(12): 1286-92, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19059108

RESUMO

BACKGROUND: Right ventricular (RV) failure after left ventricular assist device (LVAD) placement is a serious complication and is difficult to predict. In the era of destination therapy and the total artificial heart, predicting post-LVAD RV failure requiring mechanical support is extremely important. METHODS: We reviewed patient characteristics, laboratory values and hemodynamic data from 266 patients who underwent LVAD placement at the University of Pennsylvania from April 1995 to June 2007. RESULTS: Of 266 LVAD recipients, 99 required RV assist device (BiVAD) placement (37%). We compared 36 parameters between LVAD (n = 167) and BiVAD patients (n = 99) to determine pre-operative risk factors for RV assist device (RVAD) need. By univariate analysis, 23 variables showed statistically significant differences between the two groups (p < or = 0.05). By multivariate logistic regression, cardiac index < or =2.2 liters/min/m(2) (odds ratio [OR] 5.7), RV stroke work index < or =0.25 mm Hg . liter/m(2) (OR 5.1), severe pre-operative RV dysfunction (OR 5.0), pre-operative creatinine > or =1.9 mg/dl (OR 4.8), previous cardiac surgery (OR 4.5) and systolic blood pressure < or =96 mm Hg (OR 2.9) were the best predictors of RVAD need. CONCLUSIONS: The most significant predictors for RVAD need were cardiac index, RV stroke work index, severe pre-operative RV dysfunction, creatinine, previous cardiac surgery and systolic blood pressure. Using these data, we constructed an algorithm that can predict which LVAD patients will require RVAD with >80% sensitivity and specificity.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Transplante de Coração , Coração Auxiliar , Disfunção Ventricular Esquerda/cirurgia , Disfunção Ventricular Direita/cirurgia , Adulto , Idoso , Pressão Sanguínea , Complicações do Diabetes/epidemiologia , Desenho de Equipamento , Feminino , Insuficiência Cardíaca/cirurgia , Coração Auxiliar/efeitos adversos , Hemodinâmica , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Disfunção Ventricular Esquerda/epidemiologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...