Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38400388

RESUMO

In this work, an evanescent Bragg grating sensor inscribed in a few-mode planar polymer waveguide was integrated into microchannel structures and characterized by various chemical applications. The planar waveguide and the microchannels consisted of epoxide-based polymers. The Bragg grating structure was postprocessed by using point-by-point direct inscription technology. By monitoring the central wavelength shift of the reflected Bragg signal, the sensor showed a temperature sensitivity of -47.75 pm/K. Moreover, the functionality of the evanescent field-based measurements is demonstrated with two application examples: the refractive index sensing of different aqueous solutions and gas-phase hydrogen concentration detection. For the latter application, the sensor was additionally coated with a functional layer based on palladium nanoparticles. During the refractive index sensing measurement, the sensor achieved a sensitivity of 6.5 nm/RIU from air to 99.9% pure isopropyl alcohol. For the gas-phase hydrogen detection, the coated sensor achieved a reproducible concentration detection up to 4 vol% hydrogen. According to the reported experimental results, the integrated Bragg-grating-based waveguide sensor demonstrates high potential for applications based on the lab-on-a-chip concept.

2.
Opt Lett ; 45(7): 1726-1729, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32235984

RESUMO

Cladding waveguide fiber Bragg gratings (FBGs) provide a compact and simple solution for fiber shape sensing. The shape sensing accuracy is limited by birefringence, which is induced by bending and the non-isotropic FBG structure (written by femtosecond laser point-by-point technique). An algorithm based on an artificial neural network for fiber shape sensing is demonstrated, which enables increased accuracy, better robustness, and less time latency. This algorithm shows great potential in the application of high-accuracy real-time fiber shape measurements.

3.
Sensors (Basel) ; 19(18)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31510108

RESUMO

A sensor for trinitrotoluene (TNT) detection was developed by using a combination of optical micro-ring technology and a receptor coating based on molecularly imprinted sol-gel layers. Two techniques for deposition of receptor layers were compared: Airbrush technology and electrospray ionization. A concentration of less than 5 ppb for TNT in the gas-phase, using electrospray deposition of the receptor layer, was detected. The cross-sensitivities to organic substances and further nitro-based explosives were compared. As a result, the sensitivity to TNT is about one order of magnitude higher in comparison to the explosives 2,4-dinitrotoluene (DNT) or 1,3-dinitrobenzene (DNB) and about four orders of magnitude higher than the organic substances phenol, ethanol, and acetone. The signal response of the sensor is fast, and the compact sensor design enables the deposition of different receptor layers on multiple optical micro-rings on one chip, which allows a more precise analysis and reduction of side effects and false alarms.

4.
Opt Lett ; 40(7): 1266-9, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25831309

RESUMO

Waveguide bundles in bulk glass materials, consisting of several parallel scans of refractive index modifications, have been generated with a low-repetition femtosecond laser. Additionally, Bragg grating (BG) structures for 840 and 1550 nm have been introduced by segmentation of the central scan. A spectral loss in the transmission signal of >36 dB was achieved at 1550 nm with a second-order Bragg grating waveguide (BGW) in fused silica, which corresponds to an intrinsic grating efficiency of >16 dB/cm. This is to our knowledge the strongest BG structure realized in glass with a femtosecond laser. The BGW were proven to be stable up to a temperature of 250°C in fused silica. The diameter of the waveguide bundles can be adapted very easily for a broad range of wavelengths and have been demonstrated for diameters between 1 and 50 µm. The transmission properties of the waveguide bundles are affected minorly by the insertion of BG structures, which opens the ability for adjusting the BGW for a broad range of wavelength in single-mode or multimode optical circuits. BGW have been realized successfully in fused silica, borosilicate glass (BOROFLOAT 33), and AF 32 eco Thin Glass from Schott.

5.
Opt Lett ; 39(3): 540-3, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24487860

RESUMO

Femtosecond laser pulses were used for the direct point-by-point inscription of phase-shifted fiber Bragg gratings (FBGs) in a single fabrication step without postprocessing. An electro-optic amplitude modulator is used in the setup to generate a defined delay between two identical laser pulse trains for the grating inscription. The grating structure with a central phase shift is formed by focusing the modulated laser pulses into the core of a fiber, while the fiber is translated with a constant velocity. The induced phase shift leads to a narrow transmission band with a bandwidth considerably below 10 pm within the stop band of the FBG. The inscribed FBGs show a birefringence of 3.9×10(-5) whereas their temperature and strain sensitivities are 10.4 pm/K and 1.4 pm/µstrain, respectively. The fabrication process is fast and offers a high grade of flexibility for the control of all grating parameters.

6.
Opt Express ; 21(1): 918-26, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23388985

RESUMO

Accessing ultrafast photoinduced molecular dynamics on a femtosecond time-scale with vibrational selectivity and at the same time sub-diffraction limited spatial resolution would help to gain important information about ultrafast processes in nanostructures. While nonlinear Raman techniques have been used to obtain highly resolved images in combination with near-field microscopy, the use of femtosecond laser pulses in electronic resonance still constitutes a big challenge. Here, we present our first results on coherent anti-Stokes Raman scattering (fs-CARS) with femtosecond laser pulses detected in the near-field using scanning near-field optical microscopy (SNOM). We demonstrate that highly spatially resolved images can be obtained from poly(3-hexylthiophene) (P3HT) nano-structures where the fs-CARS process was in resonance with the P3HT absorption and with characteristic P3HT vibrational modes without destruction of the samples. Sub-diffraction limited lateral resolution is achieved. Especially the height resolution clearly surpasses that obtained with standard microCARS. These results will be the basis for future investigations of mode-selective dynamics in the near field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...