Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 11(36): 8732-8753, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37655519

RESUMO

Due to the health risks associated with the use of Gd-chelates and the promising effects of using nanoparticles as T1 contrast agents (CAs) for MRI, Mn-based nanoparticles are considered a highly competitive alternative. The use of hybrid constructs with paramagnetic functionality of Mn-based nanoparticles is an effective approach, in particular, the use of biocompatible lipid liquid crystalline nanoparticles (LLCNPs) as a carrier of MnO nanoparticles. LLCNPs possess a unique internal structure ensuring a payload of different polarity MnO nanoparticles. In view of MRI application, the surface properties including the polarity of MnO are crucial factors determining their relaxation rate and thus the MRI efficiency. Two novel hybrid constructs consisting of LLCNPs loaded with hydrophobic MnO-oleate and hydrophilic MnO-DMSA NPs were prepared. These nanosystems were studied in terms of their physico-chemical properties, positive T1 contrast enhancement properties (in vitro and in vivo) and biological safety. LLCNPs@MnO-oleate and LLCNPs@MnO-DMSA hybrids exhibited a heterogeneous phase composition, however with differences in the inner periodic arrangement and structural parameters, as well as in the preferable localization of MnO NPs within the LLCNPs. Also, these hybrids differed in terms of particle size-related parameters and colloidal stability, which was found to be strongly dependent on the addition of differently functionalized MnO NPs. Embedding both types of MnO NPs into LLCNPs resulted in high relaxivity parameters, in comparison to bare MnO-DMSA NPs and also commercially developed CAs (e.g. Dotarem and Teslascan). Further biosafety studies revealed that cell internalization pathways were dependent on the prepared hybrid type, while viability, effects on the mitochondria membrane potential and cytoskeletal networks were rather related to the susceptibility of the particular cell line. The high relaxation rates achieved with the developed hybrid LLCNPs@MnO enable them to be possibly used as novel and biologically safe MRI T1-enhancing CAs in in vivo imaging.


Assuntos
Meios de Contraste , Óxidos , Imageamento por Ressonância Magnética , Lipídeos
2.
J Nanobiotechnology ; 19(1): 168, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082768

RESUMO

BACKGROUND: Lipid liquid crystalline nanoparticles (LLCNPs) emerge as a suitable system for drug and contrast agent delivery. In this regard due to their unique properties, they offer a solubility of a variety of active pharmaceutics with different polarities increasing their stability and the possibility of controlled delivery. Nevertheless, the most crucial aspect underlying the application of LLCNPs for drug or contrast agent delivery is the unequivocal assessment of their biocompatibility, including cytotoxicity, genotoxicity, and related aspects. Although studies regarding the cytotoxicity of LLCNPs prepared from various lipids and surfactants were conducted, the actual mechanism and its impact on the cells (both cancer and normal) are not entirely comprehended. Therefore, in this study, LLCNPs colloidal formulations were prepared from two most popular structure-forming lipids, i.e., glyceryl monooleate (GMO) and phytantriol (PHT) with different lipid content of 2 and 20 w/w%, and the surfactant Pluronic F-127 using the top-down approach for further comparison of their properties. Prepared formulations were subjected to physicochemical characterization and followed with in-depth biological characterization, which included cyto- and genotoxicity towards cervical cancer cells (HeLa) and human fibroblast cells (MSU 1.1), the evaluation of cytoskeleton integrity, intracellular reactive oxygen species (ROS) generation upon treatment with prepared LLCNPs and finally the identification of internalization pathways. RESULTS: Results denote the higher cytotoxicity of PHT-based nanoparticles on both cell lines on monolayers as well as cellular spheroids, what is in accordance with evaluation of ROS activity level and cytoskeleton integrity. Detected level of ROS in cells upon the treatment with LLCNPs indicates their insignificant contribution to the cellular redox balance for most concentrations, however distinct for GMO- and PHT-based LLCNPs. The disintegration of cytoskeleton after administration of LLCNPs implies the relation between LLCNPs and F-actin filaments. Additionally, the expression of four genes involved in DNA damage and important metabolic processes was analyzed, indicating concentration-dependent differences between PHT- and GMO-based LLCNPs. CONCLUSIONS: Overall, GMO-based LLCNPs emerge as potentially more viable candidates for drug delivery systems as their impact on cells is not as deleterious as PHT-based as well as they were efficiently internalized by cell monolayers and 3D spheroids.


Assuntos
Álcoois Graxos/toxicidade , Glicerídeos/toxicidade , Nanopartículas/química , Química Farmacêutica , Portadores de Fármacos/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Álcoois Graxos/química , Glicerídeos/química , Humanos , Lipídeos/química , Testes de Mutagenicidade , Tamanho da Partícula , Poloxâmero/química , Poloxâmero/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Solubilidade , Tensoativos
3.
Int J Nanomedicine ; 15: 7415-7431, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116479

RESUMO

INTRODUCTION: AT101, the R-(-)-enantiomer of the cottonseed-derived polyphenol gossypol, is a promising drug in glioblastoma multiforme (GBM) therapy due to its ability to trigger autophagic cell death but also to facilitate apoptosis in tumor cells. It does have some limitations such as poor solubility in water-based media and consequent low bioavailability, which affect its response rate during treatment. To overcome this drawback and to improve the anti-cancer potential of AT101, the use of cubosome-based formulation for AT101 drug delivery has been proposed. This is the first report on the use of cubosomes as AT101 drug carriers in GBM cells. MATERIALS AND METHODS: Cubosomes loaded with AT101 were prepared from glyceryl monooleate (GMO) and the surfactant Pluronic F-127 using the top-down approach. The drug was introduced into the lipid prior to dispersion. Prepared formulations were then subjected to complex physicochemical and biological characterization. RESULTS: Formulations of AT101-loaded cubosomes were highly stable colloids with a high drug entrapment efficiency (97.7%) and a continuous, sustained drug release approaching 35% over 72 h. Using selective and sensitive NMR diffusometry, the drug was shown to be efficiently bound to the lipid-based cubosomes. In vitro imaging studies showed the high efficiency of cubosomal nanoparticles uptake into GBM cells, as well as their marked ability to penetrate into tumor spheroids. Treatment of GBM cells with the AT101-loaded cubosomes, but not with the free drug, induced cytoskeletal rearrangement and shortening of actin fibers. The prepared nanoparticles revealed stronger in vitro cytotoxic effects against GBM cells (A172 and LN229 cell lines), than against normal brain cells (SVGA and HMC3 cell lines). CONCLUSION: The results indicate that GMO-AT101 cubosome formulations are a promising basic tool for alternative approaches to GBM treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Portadores de Fármacos/química , Glioblastoma/tratamento farmacológico , Gossipol/análogos & derivados , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacocinética , Disponibilidade Biológica , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Coloides/química , Coloides/farmacologia , Citoesqueleto/efeitos dos fármacos , Preparações de Ação Retardada/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Glioblastoma/patologia , Glicerídeos/química , Gossipol/administração & dosagem , Gossipol/farmacocinética , Gossipol/farmacologia , Humanos , Lipídeos/química , Espectroscopia de Ressonância Magnética/métodos , Nanopartículas/administração & dosagem , Nanopartículas/química , Poloxâmero/química , Solubilidade
4.
J Nanopart Res ; 20(11): 306, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524192

RESUMO

Although number of stimuli-responsive drug delivery systems based on mesoporous silica nanoparticles (MSNs) have been developed, the simultaneous real-time monitoring of carrier in order to guarantee proper drug targeting still remains as a challenge. GQDs-MSNs nanocomposite nanoparticles composed of graphene quantum dots (GQDs) and MSNs are proposed as efficient doxorubicin delivery and fluorescent imaging agent, allowing to monitor intracellular localization of a carrier and drug diffusion route from the carrier. Graphene quantum dots (average diameter 3.65 ± 0.81 nm) as a fluorescent agent were chemically immobilized onto mesoporous silica nanoparticles (average diameter 44.08 ± 7.18 nm) and loaded with doxorubicin. The structure, morphology, chemical composition, and optical properties as well as drug release behavior of doxorubicin (DOX)-loaded GQDs-MSNs were investigated. Then, the in vitro cytotoxicity, cellular uptake, and intracellular localization studies were carried out. Prepared GQDs-MSNs form stable suspensions exhibiting excitation-dependent photoluminescence (PL) behavior. These nanocomposite nanoparticles can be easily DOX-loaded and show pH- and temperature-dependent release behavior. Cytotoxicity studies proved that GQDs-MSNs nanocomposite nanoparticles are nontoxic; however, when loaded with drug, they enable the therapeutic activity of DOX via its active delivery and release. GQDs-MSNs owing to their fluorescent properties and efficient in vitro cellular internalization via caveolae/lipid raft-dependent endocytosis show a high potential for the optical imaging, including the simultaneous real-time optical tracking of the loaded drug during its delivery and release. Graphical abstractᅟ.

5.
Sci Rep ; 8(1): 4041, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511277

RESUMO

Micro/nanostructures, which are assembled from various nanosized building blocks are of great scientific interests due to their combined features in the micro- and nanometer scale. This study for the first time demonstrates that ultrasmall superparamagnetic iron oxide nanoparticles can change the microstructure of their hydrocolloids under the action of external magnetic field. We aimed also at the establishment of the physiological temperature (39 °C) influence on the self-organization of silver and ultrasmall iron oxides nanoparticles (NPs) in hydrocolloids. Consequences of such induced changes were further investigated in terms of their potential effect on the biological activity in vitro. Physicochemical characterization included X-ray diffraction (XRD), optical microscopies (SEM, cryo-SEM, TEM, fluorescence), dynamic light scattering (DLS) techniques, energy dispersive (EDS), Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopies, zeta-potential and magnetic measurements. The results showed that magnetic field affected the hydrocolloids microstructure uniformity, fluorescence properties and photodynamic activity. Likewise, increased temperature caused changes in NPs hydrodynamic size distribution and in hydrocolloids microstructure. Magnetic field significantly improved photodynamic activity that was attributed to enhanced generation of reactive oxygen species due to reorganization of the microstructure.

6.
Cell Biochem Biophys ; 76(1-2): 19-28, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28871484

RESUMO

Oxygenation is one of the most important physiological parameters of biological systems. Low oxygen concentration (hypoxia) is associated with various pathophysiological processes in different organs. Hypoxia is of special importance in tumor therapy, causing poor response to treatment. Triaryl methyl (TAM) derivative radicals are commonly used in electron paramagnetic resonance (EPR) as sensors for quantitative spatial tissue oxygen mapping. They are also known as magnetic resonance imaging (MRI) contrast agents and fluorescence imaging compounds. We report the properties of the TAM radical tris(2,3,5,6-tetrachloro-4-carboxy-phenyl)methyl, (PTMTC), a potential multimodal (EPR/fluorescence) marker. PTMTC was spectrally analyzed using EPR and characterized by estimation of its sensitivity to the oxygen in liquid environment suitable for intravenous injection (1 mM PBS, pH = 7.4). Further, fluorescent emission of the radical was measured using the same solvent and its quantum yield was estimated. An in vitro cytotoxicity examination was conducted in two cancer cell lines, HT-29 (colorectal adenocarcinoma) and FaDu (squamous cell carcinoma) and followed by uptake studies. The stability of the radical in different solutions (PBS pH = 7.4, cell media used for HT-29 and FaDu cells culturing and cytotoxicity procedure, full rat blood and blood plasma) was determined. Finally, a primary toxicity test of PTMTC was carried out in mice. Results of spectral studies confirmed the multimodal properties of PTMTC. PTMTC was demonstrated to be not absorbed by cancer cells and did not interfere with luciferin-luciferase based assays. Also in vitro and in vivo tests showed that it was non-toxic and can be freely administrated till doses of 250 mg/kg BW via both i.v. and i.p. injections. This work illustrated that PTMTC is a perfect candidate for multimodal (EPR/fluorescence) contrast agent in preclinical studies.


Assuntos
Oximetria/métodos , Oxigênio/análise , Compostos de Tritil/química , Alanina Transaminase/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Espectroscopia de Ressonância de Spin Eletrônica , Corantes Fluorescentes/química , Corantes Fluorescentes/toxicidade , Radicais Livres/química , Células HT29 , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Soluções/química , Testes de Toxicidade Aguda , Transaminases/metabolismo , Compostos de Tritil/síntese química , Compostos de Tritil/toxicidade
7.
Mater Sci Eng C Mater Biol Appl ; 78: 1072-1085, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575942

RESUMO

In this study ZnPc@TiO2 hybrid nanostructures, both nanoparticles and nanotubes, as potential photosensitizers for the photodynamic therapy, fluorescent bioimaging agents, as well as anti-cancer drug nanocarriers, were prepared via zinc phthalocyanine (ZnPc) deposition on TiO2. In order to provide the selectivity of prepared hybrid nanostructures towards cancer cells they were modified with folic acid molecules (FA). The efficient attachment of both ZnPc and FA molecules was confirmed with dynamic light scattering (DLS), zeta potential measurements and X-ray photoelectron spectroscopy (XPS). It was presented that ZnPc and FA attachment has a strong effect on fluorescence emission properties of TiO2 nanostructures, which can be further used for their simultaneous visualization upon cellular uptake. ZnPc@TiO2 and FA/ZnPc@TiO2 hybrid nanotubes were then employed as doxorubicin nanocarriers. It was demonstrated that doxorubicin can be easily loaded on these hybrid nanostructures via an electrostatic interaction and then released. In vitro cytotoxicity and photo-cytotoxic activity studies showed that prepared hybrid nanostructures were selectively targeting to cancer cells. Doxorubicin loaded hybrid nanostructures were significantly more cytotoxic than un-loaded ones and their cytotoxic effect was even more severe upon irradiation. The cellular uptake of prepared hybrid nanostructures and their localization in cells was monitored in vitro in 2D cell culture and tumor-like 3D multicellular culture environment with fluorescent confocal microscopy. These hybrid nanostructures preferentially penetrated into human cervical cancer cells (HeLa) than into normal fibroblasts (MSU-1.1) and were mainly localized within the cell cytoplasm. HeLa cells spheroids were also efficiently labelled by prepared hybrid nanostructures. Fluorescent imaging of Hela cells treated with doxorubicin loaded hybrid nanostructures showed that doxorubicin was effectively delivered into cells, released and evenly distributed in the cytoplasm. In conclusion, prepared hybrid nanostructures exhibit high potential as selective bioimaging agents next to their photodynamic activity and drug delivery ability.


Assuntos
Nanoestruturas , Doxorrubicina , Portadores de Fármacos , Humanos , Fotoquimioterapia , Titânio
8.
Phys Chem Chem Phys ; 15(5): 1417-30, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23089876

RESUMO

The interaction of metal oxides with gases is very important for the operation of energy devices such as fuel cells and gas sensors, and also relevant for materials synthesis and processing. The electronic transport properties of metal oxides for the aforementioned devices strongly depend on the chemistry of these gases and on the presence or absence of defects on the surface and in the bulk. The Debye screening length is in this respect a material specific property which becomes particularly significant when the material is comprised of nanoparticles. In the present study, poly-crystalline TiO(2), ZnO and SnO(2) nanoparticles were synthesized by a high temperature flame spray combustion process and investigated for their interaction with hydrogen. The chemistry of the reduced and oxidized surfaces of these metal oxides, where the interaction with gases takes place, was investigated in detail with X-ray photoelectron spectroscopy (XPS). The transitions found near E(F) with XPS are consistent with those found by diffuse reflectance spectroscopy (DRS) and were assigned to surface states originating from non-equilibrium oxygen vacancies. We show how the non-stoichiometric character of the metal oxide surface constitutes electronic surface defects, in particular oxygen vacancies which allow for additional transitions near the Fermi energy (E(F)). The concentration of these surface defects can be strongly reduced by thermal after-treatment under air or increased by Ar(+)-sputtering, after which significant spectral features appear near E(F). Such prominent changes are particularly observed for TiO(2) and SnO(2), whereas the stoichiometry of the ZnO surface seems to be less responsive to such reducing and oxidizing conditions. Pronounced changes of the electrical conductivity upon changing from reducing to oxidizing conditions at elevated temperatures were monitored by electrochemical impedance spectroscopy (EIS). The lowering of the potential barrier for the charge transport particularly at lower temperatures already at reducing conditions is confirmed. The impedance response indicates that charge transfer is governed predominantly by one single process, i.e. by interaction of surface-like states localized within depletion layer with gas molecules. This implies that the free charge carriers in the material are determined by the intrinsic property like non-stoichiometry. Gas sensors made from such FSS nanoparticulate metal oxides showed well developed sensing characteristics of the hydrogen sensing at moderate temperatures.

9.
Environ Sci Pollut Res Int ; 19(9): 3696-708, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23054731

RESUMO

TiO(2):Nb nanopowders within a dopant concentration in the range of 0.1-15 at.% were prepared by one-step flame spray synthesis. Effect of niobium doping on structural, optical and photocatalytic properties of titanium dioxide nanopowders was studied. Morphology and structure were investigated by means of Brunauer-Emmett-Teller isotherm, X-ray diffraction and transmission electron microscopy. Diffuse reflectance and the resulting band gap energy were determined by diffuse reflectance spectroscopy. Photocatalytic activity of the investigated nanopowders was revised for the photodecomposition of methylene blue (MB), methyl orange (MO) and 4-chlorophenol under UVA and VIS light irradiation. Commercial TiO(2)-P25 nanopowder was used as a reference. The specific surface area of the powders was ranging from 42.9 m(2)/g for TiO(2):0.1 at.% Nb to 90.0 m(2)/g for TiO(2):15 at.% Nb. TiO(2):Nb particles were nanosized, spherically shaped and polycrystalline. Anatase was the predominant phase in all samples. The anatase-related transition was at 3.31 eV and rutile-related one at 3.14 eV. TiO(2):Nb nanopowders exhibited additional absorption in the visible range. In comparison to TiO(2)-P25, improved photocatalytic activity of TiO(2):Nb was observed for the degradation of MB and MO under both UVA and VIS irradiation, where low doping level (Nb < 1 at.%) was the most effective. Niobium doping affected structural, optical and photocatalytic properties of TiO(2). Low dopant level enhanced photocatalytic performance under UVA and VIS irradiation. Therefore, TiO(2):Nb (Nb < 1 at.%) can be proposed as an efficient selective solar light photocatalyst.


Assuntos
Nanoestruturas/química , Nióbio/química , Titânio/química , Compostos Azo/química , Luz , Azul de Metileno/química , Estrutura Molecular , Nanoestruturas/ultraestrutura , Processos Fotoquímicos , Fotólise , Raios Ultravioleta
10.
J Nanosci Nanotechnol ; 12(8): 6401-11, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22962756

RESUMO

Nanoscaled Fe2O3 powders as candidates for gas sensing material for hydrogen detection were synthesized by the high temperature flame spray assisted combustion of ferrocene dissolved in benzene. X-ray diffraction (XRD) and selected area electron diffraction (SAED) show that the as prepared nanopowder consists of maghemite (gamma-Fe2O3) with low crystallinity. Thermal post-treatment causes a phase transformation towards hematite (alpha-Fe2O3) accompanied by an increase in the crystallinity. Upon exposure to air and hydrogen at elevated temperatures, both phases show a significant variation of conductivity and activation energy-as evidenced by impedance spectra-and thus a favorable sensor response, surpassing even that of flame-synthesized nanocrystalline tin dioxide. The conductivity has been identified as of electronic origin, affected by trap states located in the region adjacent to grain boundaries. Quantitative analysis of the impedance spectra with equivalent circuits shows that the conductivity is thermally activated and affected by the interaction of hydrogen with the sensor material. The calculated Debye screening length of gamma-Fe2O3 and alpha-Fe2O3 is about 27 nm and 16 nm, respectively, what contributes significantly to the sensitivity of the material. Gamma-Fe2O3 and alpha-Fe2O3 exhibit high sensor response towards hydrogen in a wide concentration range. Gamma-Fe2O3 shows n-type semiconducting behavior up to 573 K. Alpha-Fe2O3 shows p-type semiconducting behavior, as reflected in the dynamic changes of the resistivity. For both sensor materials, 523 K was the optimal operating temperature.

11.
Chemphyschem ; 13(12): 2937-44, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22674527

RESUMO

Anodization of α-Fe(2)O(3) (hematite) electrodes in alkaline electrolyte under constant potential conditions the electrode surface in a way that an additional current wave occurs in the cyclic voltammogram. The energy position of this current wave is closely below the potential of the anodization treatment. Continued cycling or exchanging of the electrolyte causes depletion of this new feature. The O 1s and Fe 2p core-level X-ray photoelectron spectra (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectra of such conditioned hematite exhibit a chemical shift towards higher binding energies, in line with the general perception that anodization generates oxide species with dielectric properties. The valence band XPS and particularly the iron resonant valence band photoemission spectra, however, are shifted towards the opposite direction, that is, towards the Fermi energy, suggesting that hole doping on hematite has taken place during anodization. Quantitative analysis of the Fe 2p resonant valence band photoemission spectra shows that the spectra obtained at the Fe 2p absorption threshold are shifted by virtually the same energy as the anodization potential towards the Fermi energy. The tentative interpretation of this observation is that anodization forms a surface film on the hematite that is specific to the anodization potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...