Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NAR Genom Bioinform ; 4(1): lqac014, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35265835

RESUMO

The substantial development of high-throughput biotechnologies has rendered large-scale multi-omics datasets increasingly available. New challenges have emerged to process and integrate this large volume of information, often obtained from widely heterogeneous sources. Kernel methods have proven successful to handle the analysis of different types of datasets obtained on the same individuals. However, they usually suffer from a lack of interpretability since the original description of the individuals is lost due to the kernel embedding. We propose novel feature selection methods that are adapted to the kernel framework and go beyond the well-established work in supervised learning by addressing the more difficult tasks of unsupervised learning and kernel output learning. The method is expressed under the form of a non-convex optimization problem with a ℓ1 penalty, which is solved with a proximal gradient descent approach. It is tested on several systems biology datasets and shows good performances in selecting relevant and less redundant features compared to existing alternatives. It also proved relevant for identifying important governmental measures best explaining the time series of Covid-19 reproducing number evolution during the first months of 2020. The proposed feature selection method is embedded in the R package mixKernel version 0.8, published on CRAN. Installation instructions are available at http://mixkernel.clementine.wf/.

2.
IEEE Trans Pattern Anal Mach Intell ; 44(10): 7296-7306, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34232864

RESUMO

Noisy labels often occur in vision datasets, especially when they are obtained from crowdsourcing or Web scraping. We propose a new regularization method, which enables learning robust classifiers in presence of noisy data. To achieve this goal, we propose a new adversarial regularization scheme based on the Wasserstein distance. Using this distance allows taking into account specific relations between classes by leveraging the geometric properties of the labels space. Our Wasserstein Adversarial Regularization (WAR) encodes a selective regularization, which promotes smoothness of the classifier between some classes, while preserving sufficient complexity of the decision boundary between others. We first discuss how and why adversarial regularization can be used in the context of noise and then show the effectiveness of our method on five datasets corrupted with noisy labels: in both benchmarks and real datasets, WAR outperforms the state-of-the-art competitors.


Assuntos
Algoritmos , Aprendizagem , Redes Neurais de Computação , Razão Sinal-Ruído
3.
IEEE Trans Pattern Anal Mach Intell ; 39(9): 1853-1865, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27723579

RESUMO

Domain adaptation is one of the most challenging tasks of modern data analytics. If the adaptation is done correctly, models built on a specific data representation become more robust when confronted to data depicting the same classes, but described by another observation system. Among the many strategies proposed, finding domain-invariant representations has shown excellent properties, in particular since it allows to train a unique classifier effective in all domains. In this paper, we propose a regularized unsupervised optimal transportation model to perform the alignment of the representations in the source and target domains. We learn a transportation plan matching both PDFs, which constrains labeled samples of the same class in the source domain to remain close during transport. This way, we exploit at the same time the labeled samples in the source and the distributions observed in both domains. Experiments on toy and challenging real visual adaptation examples show the interest of the method, that consistently outperforms state of the art approaches. In addition, numerical experiments show that our approach leads to better performances on domain invariant deep learning features and can be easily adapted to the semi-supervised case where few labeled samples are available in the target domain.

4.
IEEE Trans Neural Netw Learn Syst ; 27(3): 636-47, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25910256

RESUMO

We introduce a novel algorithm for solving learning problems where both the loss function and the regularizer are nonconvex but belong to the class of difference of convex (DC) functions. Our contribution is a new general purpose proximal Newton algorithm that is able to deal with such a situation. The algorithm consists in obtaining a descent direction from an approximation of the loss function and then in performing a line search to ensure a sufficient descent. A theoretical analysis is provided showing that the iterates of the proposed algorithm admit as limit points stationary points of the DC objective function. Numerical experiments show that our approach is more efficient than the current state of the art for a problem with a convex loss function and a nonconvex regularizer. We have also illustrated the benefit of our algorithm in high-dimensional transductive learning problem where both the loss function and regularizers are nonconvex.

5.
IEEE Trans Image Process ; 23(3): 979-91, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24464613

RESUMO

Building an accurate training database is challenging in supervised classification. For instance, in medical imaging, radiologists often delineate malignant and benign tissues without access to the histological ground truth, leading to uncertain data sets. This paper addresses the pattern classification problem arising when available target data include some uncertainty information. Target data considered here are both qualitative (a class label) or quantitative (an estimation of the posterior probability). In this context, usual discriminative methods, such as the support vector machine (SVM), fail either to learn a robust classifier or to predict accurate probability estimates. We generalize the regular SVM by introducing a new formulation of the learning problem to take into account class labels as well as class probability estimates. This original reformulation into a probabilistic SVM (P-SVM) can be efficiently solved by adapting existing flexible SVM solvers. Furthermore, this framework allows deriving a unique learned prediction function for both decision and posterior probability estimation providing qualitative and quantitative predictions. The method is first tested on synthetic data sets to evaluate its properties as compared with the classical SVM and fuzzy-SVM. It is then evaluated on a clinical data set of multiparametric prostate magnetic resonance images to assess its performances in discriminating benign from malignant tissues. P-SVM is shown to outperform classical SVM as well as the fuzzy-SVM in terms of probability predictions and classification performances, and demonstrates its potential for the design of an efficient computer-aided decision system for prostate cancer diagnosis based on multiparametric magnetic resonance (MR) imaging.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Neoplasias da Próstata/patologia , Máquina de Vetores de Suporte , Humanos , Aumento da Imagem/métodos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Front Neurosci ; 6: 29, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22408601

RESUMO

One of the most interesting challenges in ECoG-based Brain-Machine Interface is movement prediction. Being able to perform such a prediction paves the way to high-degree precision command for a machine such as a robotic arm or robotic hands. As a witness of the BCI community increasing interest toward such a problem, the fourth BCI Competition provides a dataset which aim is to predict individual finger movements from ECoG signals. The difficulty of the problem relies on the fact that there is no simple relation between ECoG signals and finger movements. We propose in this paper, to estimate and decode these finger flexions using switching models controlled by an hidden state. Switching models can integrate prior knowledge about the decoding problem and helps in predicting fine and precise movements. Our model is thus based on a first block which estimates which finger is moving and another block which, knowing which finger is moving, predicts the movements of all other fingers. Numerical results that have been submitted to the Competition show that the model yields high decoding performances when the hidden state is well estimated. This approach achieved the second place in the BCI competition with a correlation measure between real and predicted movements of 0.42.

7.
IEEE Trans Neural Netw ; 22(8): 1307-20, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21813358

RESUMO

Recently, there has been much interest around multitask learning (MTL) problem with the constraints that tasks should share a common sparsity profile. Such a problem can be addressed through a regularization framework where the regularizer induces a joint-sparsity pattern between task decision functions. We follow this principled framework and focus on l(p)-l(q) (with 0 ≤ p ≤ 1 and 1 ≤ q ≤ 2) mixed norms as sparsity-inducing penalties. Our motivation for addressing such a larger class of penalty is to adapt the penalty to a problem at hand leading thus to better performances and better sparsity pattern. For solving the problem in the general multiple kernel case, we first derive a variational formulation of the l(1)-l(q) penalty which helps us in proposing an alternate optimization algorithm. Although very simple, the latter algorithm provably converges to the global minimum of the l(1)-l(q) penalized problem. For the linear case, we extend existing works considering accelerated proximal gradient to this penalty. Our contribution in this context is to provide an efficient scheme for computing the l(1)-l(q) proximal operator. Then, for the more general case, when , we solve the resulting nonconvex problem through a majorization-minimization approach. The resulting algorithm is an iterative scheme which, at each iteration, solves a weighted l(1)-l(q) sparse MTL problem. Empirical evidences from toy dataset and real-word datasets dealing with brain-computer interface single-trial electroencephalogram classification and protein subcellular localization show the benefit of the proposed approaches and algorithms.


Assuntos
Inteligência Artificial , Modelos Lineares , Desempenho Psicomotor , Bases de Dados Factuais/classificação , Reconhecimento Automatizado de Padrão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...