Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Structure ; 26(4): 640-648.e5, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29526435

RESUMO

Global changes in bacterial gene expression can be orchestrated by the coordinated activation/deactivation of alternative sigma (σ) factor subunits of RNA polymerase. Sigma factors themselves are regulated in myriad ways, including via anti-sigma factors. Here, we have determined the solution structure of anti-sigma factor CsfB, responsible for inhibition of two alternative sigma factors, σG and σE, during spore formation by Bacillus subtilis. CsfB assembles into a symmetrical homodimer, with each monomer bound to a single Zn2+ ion via a treble-clef zinc finger fold. Directed mutagenesis indicates that dimer formation is critical for CsfB-mediated inhibition of both σG and σE, and we have characterized these interactions in vitro. This work represents an advance in our understanding of how CsfB mediates inhibition of two alternative sigma factors to drive developmental gene expression in a bacterium.


Assuntos
Bacillus subtilis/química , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/química , Fator sigma/química , Esporos Bacterianos/química , Zinco/química , Sequência de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Sítios de Ligação , Cátions Bivalentes , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fator sigma/antagonistas & inibidores , Fator sigma/genética , Fator sigma/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Zinco/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(34): E7073-E7081, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784753

RESUMO

Bacterial sporulation allows starving cells to differentiate into metabolically dormant spores that can survive extreme conditions. Following asymmetric division, the mother cell engulfs the forespore, surrounding it with two bilayer membranes. During the engulfment process, an essential channel, the so-called feeding tube apparatus, is thought to cross both membranes to create a direct conduit between the mother cell and the forespore. At least nine proteins are required to create this channel, including SpoIIQ and SpoIIIAA-AH. Here, we present the near-atomic resolution structure of one of these proteins, SpoIIIAG, determined by single-particle cryo-EM. A 3D reconstruction revealed that SpoIIIAG assembles into a large and stable 30-fold symmetric complex with a unique mushroom-like architecture. The complex is collectively composed of three distinctive circular structures: a 60-stranded vertical ß-barrel that forms a large inner channel encircled by two concentric rings, one ß-mediated and the other formed by repeats of a ring-building motif (RBM) common to the architecture of various dual membrane secretion systems of distinct function. Our near-atomic resolution structure clearly shows that SpoIIIAG exhibits a unique and dramatic adaptation of the RBM fold with a unique ß-triangle insertion that assembles into the prominent channel, the dimensions of which suggest the potential passage of large macromolecules between the mother cell and forespore during the feeding process. Indeed, mutation of residues located at key interfaces between monomers of this RBM resulted in severe defects both in vivo and in vitro, providing additional support for this unprecedented structure.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/ultraestrutura , Sequência de Aminoácidos , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Alinhamento de Sequência , Esporos Bacterianos/química , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo
3.
J Bacteriol ; 198(9): 1451-63, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26929302

RESUMO

UNLABELLED: SpoIIQ is an essential component of a channel connecting the developing forespore to the adjacent mother cell during Bacillus subtilis sporulation. This channel is generally required for late gene expression in the forespore, including that directed by the late-acting sigma factor σ(G) Here, we present evidence that SpoIIQ also participates in a previously unknown gene regulatory circuit that specifically represses expression of the gene encoding the anti-sigma factor CsfB, a potent inhibitor of σ(G) The csfB gene is ordinarily transcribed in the forespore only by the early-acting sigma factor σ(F) However, in a mutant lacking the highly conserved SpoIIQ transmembrane amino acid Tyr-28, csfB was also aberrantly transcribed later by σ(G), the very target of CsfB inhibition. This regulation of csfB by SpoIIQ Tyr-28 is specific, given that the expression of other σ(F)-dependent genes was unaffected. Moreover, we identified a conserved element within the csfB promoter region that is both necessary and sufficient for SpoIIQ Tyr-28-mediated inhibition. These results indicate that SpoIIQ is a bifunctional protein that not only generally promotes σ(G)activity in the forespore as a channel component but also specifically maximizes σ(G)activity as part of a gene regulatory circuit that represses σ(G)-dependent expression of its own inhibitor, CsfB. Finally, we demonstrate that SpoIIQ Tyr-28 is required for the proper localization and stability of the SpoIIE phosphatase, raising the possibility that these two multifunctional proteins cooperate to fine-tune developmental gene expression in the forespore at late times. IMPORTANCE: Cellular development is orchestrated by gene regulatory networks that activate or repress developmental genes at the right time and place. Late gene expression in the developing Bacillus subtilis spore is directed by the alternative sigma factor σ(G) The activity of σ(G)requires a channel apparatus through which the adjacent mother cell provides substrates that generally support gene expression. Here we report that the channel protein SpoIIQ also specifically maximizes σ(G)activity as part of a previously unknown regulatory circuit that prevents σ(G)from activating transcription of the gene encoding its own inhibitor, the anti-sigma factor CsfB. The discovery of this regulatory circuit significantly expands our understanding of the gene regulatory network controlling late gene expression in the developing B. subtilis spore.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Fator sigma/genética , Aminoácidos , Expressão Gênica , Redes Reguladoras de Genes , Mutação , Alinhamento de Sequência , Fator sigma/metabolismo , Esporos Bacterianos/fisiologia , Fatores de Transcrição
4.
Appl Environ Microbiol ; 79(20): 6369-74, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23934497

RESUMO

Early studies with Geobacter sulfurreducens suggested that outer-surface c-type cytochromes might play a role in U(VI) reduction, but it has recently been suggested that there is substantial U(VI) reduction at the surface of the electrically conductive pili known as microbial nanowires. This phenomenon was further investigated. A strain of G. sulfurreducens, known as Aro-5, which produces pili with substantially reduced conductivity reduced U(VI) nearly as well as the wild type, as did a strain in which the gene for PilA, the structural pilin protein, was deleted. In order to reduce rates of U(VI) reduction to levels less than 20% of the wild-type rates, it was necessary to delete the genes for the five most abundant outer surface c-type cytochromes of G. sulfurreducens. X-ray absorption near-edge structure spectroscopy demonstrated that whereas 83% ± 10% of the uranium associated with wild-type cells correspond to U(IV) after 4 h of incubation, with the quintuple mutant, 89% ± 10% of uranium was U(VI). Transmission electron microscopy and X-ray energy dispersion spectroscopy revealed that wild-type cells did not precipitate uranium along pili as previously reported, but U(IV) was precipitated at the outer cell surface. These findings are consistent with those of previous studies, which have suggested that G. sulfurreducens requires outer-surface c-type cytochromes but not pili for the reduction of soluble extracellular electron acceptors.


Assuntos
Citocromos/metabolismo , Geobacter/enzimologia , Geobacter/metabolismo , Urânio/metabolismo , Citocromos/genética , Fímbrias Bacterianas/enzimologia , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Deleção de Genes , Geobacter/genética , Geobacter/ultraestrutura , Microscopia Eletrônica de Transmissão , Oxirredução , Espectroscopia por Absorção de Raios X
5.
Adv Microb Physiol ; 59: 1-100, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22114840

RESUMO

Geobacter species specialize in making electrical contacts with extracellular electron acceptors and other organisms. This permits Geobacter species to fill important niches in a diversity of anaerobic environments. Geobacter species appear to be the primary agents for coupling the oxidation of organic compounds to the reduction of insoluble Fe(III) and Mn(IV) oxides in many soils and sediments, a process of global biogeochemical significance. Some Geobacter species can anaerobically oxidize aromatic hydrocarbons and play an important role in aromatic hydrocarbon removal from contaminated aquifers. The ability of Geobacter species to reductively precipitate uranium and related contaminants has led to the development of bioremediation strategies for contaminated environments. Geobacter species produce higher current densities than any other known organism in microbial fuel cells and are common colonizers of electrodes harvesting electricity from organic wastes and aquatic sediments. Direct interspecies electron exchange between Geobacter species and syntrophic partners appears to be an important process in anaerobic wastewater digesters. Functional and comparative genomic studies have begun to reveal important aspects of Geobacter physiology and regulation, but much remains unexplored. Quantifying key gene transcripts and proteins of subsurface Geobacter communities has proven to be a powerful approach to diagnose the in situ physiological status of Geobacter species during groundwater bioremediation. The growth and activity of Geobacter species in the subsurface and their biogeochemical impact under different environmental conditions can be predicted with a systems biology approach in which genome-scale metabolic models are coupled with appropriate physical/chemical models. The proficiency of Geobacter species in transferring electrons to insoluble minerals, electrodes, and possibly other microorganisms can be attributed to their unique "microbial nanowires," pili that conduct electrons along their length with metallic-like conductivity. Surprisingly, the abundant c-type cytochromes of Geobacter species do not contribute to this long-range electron transport, but cytochromes are important for making the terminal electrical connections with Fe(III) oxides and electrodes and also function as capacitors, storing charge to permit continued respiration when extracellular electron acceptors are temporarily unavailable. The high conductivity of Geobacter pili and biofilms and the ability of biofilms to function as supercapacitors are novel properties that might contribute to the field of bioelectronics. The study of Geobacter species has revealed a remarkable number of microbial physiological properties that had not previously been described in any microorganism. Further investigation of these environmentally relevant and physiologically unique organisms is warranted.


Assuntos
Ecologia , Geobacter/fisiologia , Biotecnologia , Recuperação e Remediação Ambiental , Compostos Férricos/metabolismo , Geobacter/química , Geobacter/classificação , Geobacter/genética
6.
PLoS One ; 6(2): e16660, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21347429

RESUMO

Male odors can influence a female's reproductive physiology. In the mouse, the odor of male urine results in an early onset of female puberty. Several volatile and protein pheromones have previously been reported to each account for this bioactivity. Here we bioassay inbred BALB/cJ females to study pheromone-accelerated uterine growth, a developmental hallmark of puberty. We evaluate the response of wild-type and mutant mice lacking a specialized sensory transduction channel, TrpC2, and find TrpC2 function to be necessary for pheromone-mediated uterine growth. We analyze the relative effectiveness of pheromones previously identified to accelerate puberty through direct bioassay and find none to significantly accelerate uterine growth in BALB/cJ females. Complementary to this analysis, we have devised a strategy of partial purification of the uterine growth bioactivity from male urine and applied it to purify bioactivity from three different laboratory strains. The biochemical characteristics of the active fraction of all three strains are inconsistent with that of previously known pheromones. When directly analyzed, we are unable to detect previously known pheromones in urine fractions that generate uterine growth. Our analysis indicates that pheromones emitted by males to advance female puberty remain to be identified.


Assuntos
Feromônios/farmacologia , Útero/efeitos dos fármacos , Útero/crescimento & desenvolvimento , Animais , Bioensaio , Feminino , Endogamia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Tamanho do Órgão/efeitos dos fármacos , Feromônios/urina , Puberdade/efeitos dos fármacos , Puberdade/genética , Puberdade/fisiologia , Especificidade da Espécie , Canais de Cátion TRPC/genética , Fatores de Tempo , Órgão Vomeronasal/metabolismo
7.
Cytoskeleton (Hoboken) ; 67(5): 309-21, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20183870

RESUMO

We are interested in mechanisms that establish and maintain the highly ordered contractile apparatus of striated muscle. The homologous proteins myosin and paramyosin are the major structural components of thick filaments in invertebrate animals. In Caenorhabditis elegans, both proteins contain a homologous, small nonhelical domain that is known to be phosphorylated in paramyosin. In this report, we show that a proposed phosphorylation motif (S_S_A), which is present in several copies in the nonhelical regions of both myosin and paramyosin, is highly conserved among nematodes. We used in vivo assays to examine the assembly properties of proteins in which one or more motifs were targeted by point mutagenesis or deletion. In all cases, expression of mutant proteins improved the phenotype of the corresponding null mutant animals, but produced variable structural defects, including birefringent aggregates in adults and abnormal localization in embryos. Point mutation, but not deletion, of the myosin A nonhelical tailpiece produced ectopic structures that appeared as masses of jumbled filaments by TEM. Antibody labeling showed that aggregates of either mutant protein did not recruit the endogenous version of the other. Analysis of mutant embryos lacking either paramyosin or myosin A (the essential isoform at the thick filament center) indicated that both wild-type proteins can independently localize and initiate assembly, although the structures produced are abnormal. Our results suggest that muscle cells actively restrict myosin and paramyosin assembly through phosphorylation of the S_S_A motifs and that each protein is regulated independently.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Músculo Estriado/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Western Blotting , Caenorhabditis elegans/ultraestrutura , Proteínas de Caenorhabditis elegans/química , Microscopia Eletrônica , Cadeias Pesadas de Miosina/química , Fosforilação , Tropomiosina/química , Tropomiosina/metabolismo
8.
Genetics ; 184(1): 79-90, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19901071

RESUMO

Mutations in the unc-82 locus of Caenorhabditis elegans were previously identified by screening for disrupted muscle cytoskeleton in otherwise apparently normal mutagenized animals. Here we demonstrate that the locus encodes a serine/threonine kinase orthologous to human ARK5/SNARK (NUAK1/NUAK2) and related to the PAR-1 and SNF1/AMP-Activated kinase (AMPK) families. The predicted 1600-amino-acid polypeptide contains an N-terminal catalytic domain and noncomplex repetitive sequence in the remainder of the molecule. Phenotypic analyses indicate that unc-82 is required for maintaining the organization of myosin filaments and internal components of the M-line during cell-shape changes. Mutants exhibit normal patterning of cytoskeletal elements during early embryogenesis. Defects in localization of thick filament and M-line components arise during embryonic elongation and become progressively more severe as development proceeds. The phenotype is independent of contractile activity, consistent with unc-82 mutations preventing proper cytoskeletal reorganization during growth, rather than undermining structural integrity of the M-line. This is the first report establishing a role for the UNC-82/ARK5/SNARK kinases in normal development. We propose that activation of UNC-82 kinase during cell elongation regulates thick filament attachment or growth, perhaps through phosphorylation of myosin and paramyosin. We speculate that regulation of myosin is an ancestral characteristic of kinases in this region of the kinome.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/genética , Músculos/embriologia , Músculos/metabolismo , Miosinas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Sequência de Bases , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Cálcio/metabolismo , Calmodulina/metabolismo , Crescimento Celular , Humanos , Músculos/citologia , Mutação , Miosinas/química , Fenótipo , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...