Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 110(30): 15012-20, 2006 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-16869616

RESUMO

The double-bridged hemicarcerand [A,B-(CH2OH)2-cavitand]-(CH2NHCH2)2-[A,B-(CH2OH)2-cavitand] 23 (and several other related compounds) was synthesized by the condensation of the two complementary precursors A,B-(CH2NH2)2(CH2OH)2-cavitand and A,B-(CH2Br)2(CH2OAc)2-cavitand followed by hydrolysis of the acetate groups. This hemicarcerand has nitrogen and oxygen donor atoms located on the interior of the spherical cavity and thus allows endohedral coordination of metal ions. The cavity has a volume of approximately 0.12 nm3, a value obtained by calculating a Connolly-type contact surface and the molecular electrostatic potential. The Cu2+ complex of hemicarcerand 23 was studied in detail by EPR and DFT calculations at the UB3LYP/6-31G level to verify the anticipated endohedral nature of the metal complex. It could be shown that the copper ion is coordinated to four oxygen donor atoms and no deviation from axial symmetry at the copper site could be detected. No direct coordination to nitrogen atoms of the hemicarcerand could be observed; however, complexation with DMF solvent molecules was detected by ESEEM and HYSCORE experiments. The closed structure of the hemicarcerand was also confirmed by an evaluation of proton-copper distances. Results from DFT calculations are in accord with the EPR results, and further support suggested coordination of the Cu(II) within the hemicarcerand cavity by four oxygen donor atoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...