Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Digit Health ; 10: 20552076241234627, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38528967

RESUMO

Objective: Mobile Health apps could be a feasible and effective tool to raise awareness for breast cancer prevention and to support women to change their behaviour to a healthier lifestyle. The aim of this study was to analyse the characteristics and quality of apps designed for breast cancer prevention and education. Methods: We conducted a systematic search for apps covering breast cancer prevention topics in the Google Play and Apple App Store accessible from Germany using search terms either in German or in English. Only apps with a last update after June 2020 were included. The apps identified were downloaded and evaluated by two independent researchers. App quality was analysed using the Mobile Application Rating Scale (MARS). Associations of app characteristics and MARS rating were analysed. Results: We identified 19 apps available in the Google Play Store and seven apps available in the Apple App Store that met all inclusion criteria. The mean MARS score was 3.07 and 3.50, respectively. Functionality was the highest-scoring domain. Operating system, developer (healthcare), download rates and time since the last update were significantly associated with overall MARS score. In addition, the presence of the following app functions significantly influenced MARS rating: breast self-examination tutorial, reminder for self-examination, documentation feature and education about breast cancer risk factors. Conclusions: Although most of the apps offer important features for breast cancer prevention, none of the analysed apps combined all functions. The absence of healthcare professionals' expertise in developing apps negatively affects the overall quality.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38082860

RESUMO

Smartphones enable and facilitate biomedical studies as they allow the recording of various biomedical signals, including photoplethysmograms (PPG). However, user engagement rates in mobile health studies are reduced when an application (app) needs to be installed. This could be alleviated by using installation-free web apps. We evaluate the feasibility of browser-based PPG recording, conducting the first usability study on smartphone-based PPG. We present an at-home study using a web app and library for PPG recording using the rear camera and flash. The underlying library is freely made available to researchers. 25 Android users participated, using their own smartphones. The study consisted of a demographic and anamnestic questionnaire, the signal recording itself (60 s), and a consecutive usability questionnaire. After filtering, heart rate was extracted (14/17 successful), signal-to-noise ratios assessed (0.64 ± 0.50 dB, mean ± standard deviation), and quality was visually inspected (12/17 usable for diagnosis). Recording was not supported in 9 cases. This was due to the browser's insufficient support for the flash light API. The app received a System Usability Scale score of 82 ± 9, which is above the 90th percentile. Overall, browser flash light support is the main limiting factor for broad device support. Thus, browser-based PPG is not yet widely applicable, although most participants feel comfortable with the recording itself. The utilization of the user-facing camera might represent a more promising approach. This study contributes to the development of low-barrier, user-friendly, installation-free smartphone signal acquisition. This enables profound, comprehensive data collection for research and clinical practice.Clinical relevance- WebPPG offers low-barrier remote diagnostic capabilities without the need for app installation.


Assuntos
Aplicativos Móveis , Smartphone , Humanos , Fotopletismografia , Estudos de Viabilidade , Inquéritos e Questionários
3.
JMIR Pediatr Parent ; 6: e50765, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38109377

RESUMO

Background: Although digital maternity records (DMRs) have been evaluated in the past, no previous work investigated usability or acceptance through an observational usability study. Objective: The primary objective was to assess the usability and perception of a DMR smartphone app for pregnant women. The secondary objective was to assess personal preferences and habits related to online information searching, wearable data presentation and interpretation, at-home examination, and sharing data for research purposes during pregnancy. Methods: A DMR smartphone app was developed. Key features such as wearable device integration, study functionalities (eg, questionnaires), and common pregnancy app functionalities (eg, mood tracker) were included. Women who had previously given birth were invited to participate. Participants completed 10 tasks while asked to think aloud. Sessions were conducted via Zoom. Video, audio, and the shared screen were recorded for analysis. Task completion times, task success, errors, and self-reported (free text) feedback were evaluated. Usability was measured through the System Usability Scale (SUS) and User Experience Questionnaire (UEQ). Semistructured interviews were conducted to explore the secondary objective. Results: A total of 11 participants (mean age 34.6, SD 2.2 years) were included in the study. A mean SUS score of 79.09 (SD 18.38) was achieved. The app was rated "above average" in 4 of 6 UEQ categories. Sixteen unique features were requested. We found that 5 of 11 participants would only use wearables during pregnancy if requested to by their physician, while 10 of 11 stated they would share their data for research purposes. Conclusions: Pregnant women rely on their medical caregivers for advice, including on the use of mobile and ubiquitous health technology. Clear benefits must be communicated if issuing wearable devices to pregnant women. Participants that experienced pregnancy complications in the past were overall more open toward the use of wearable devices in pregnancy. Pregnant women have different opinions regarding access to, interpretation of, and reactions to alerts based on wearable data. Future work should investigate personalized concepts covering these aspects.

4.
NPJ Digit Med ; 6(1): 189, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821584

RESUMO

During pregnancy, almost all women experience pregnancy-related symptoms. The relationship between symptoms and their association with pregnancy outcomes is not well understood. Many pregnancy apps allow pregnant women to track their symptoms. To date, the resulting data are primarily used from a commercial rather than a scientific perspective. In this work, we aim to examine symptom occurrence, course, and their correlation throughout pregnancy. Self-reported app data of a pregnancy symptom tracker is used. In this context, we present methods to handle noisy real-world app data from commercial applications to understand the trajectory of user and patient-reported data. We report real-world evidence from patient-reported outcomes that exceeds previous works: 1,549,186 tracked symptoms from 183,732 users of a smartphone pregnancy app symptom tracker are analyzed. The majority of users track symptoms on a single day. These data are generalizable to those users who use the tracker for at least 5 months. Week-by-week symptom report data are presented for each symptom. There are few or conflicting reports in the literature on the course of diarrhea, fatigue, headache, heartburn, and sleep problems. A peak in fatigue in the first trimester, a peak in headache reports around gestation week 15, and a steady increase in the reports of sleeping difficulty throughout pregnancy are found. Our work highlights the potential of secondary use of industry data. It reveals and clarifies several previously unknown or disputed symptom trajectories and relationships. Collaboration between academia and industry can help generate new scientific knowledge.

5.
Oncologist ; 28(10): e847-e858, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37536278

RESUMO

Breast cancer is affecting millions of people worldwide. If not appropriately handled, the side effects of different modalities of cancer treatment can negatively impact patients' quality of life and cause treatment interruptions. In recent years, mobile health (mHealth) interventions have shown promising opportunities to support breast cancer care. Numerous studies implemented mobile health interventions aiming to support patients with breast cancer, for example, through physical activity promotion or educational content. Nonetheless, current literature reveals that real-world evidence for the actual benefits remains unclear. In this systematic review, we focus on analyzing the methodology used in recent studies to determine the effects of mHealth applications and wearable devices on the outcome of patients with breast cancer. We followed the PRISMA guideline for the selection, analysis, and reporting of relevant studies found in the databases of Medline, Scopus, Web of Science, and Cochrane Library. A total of 276 unique records were identified, and 20 studies met the inclusion criteria. Study quality was assessed with the Effective Public Health Practice Project (EPHPP) Quality Assessment Tool for Quantitative Studies. While many of the studies used standardized questionnaires as patient-reported outcome measures, there was minimal use of objective measurements, such as activity sensors. Adoption, drop-out rates, and usage behavior of users of the mobile health intervention were often not reported. Future work should clearly define the focus and desired outcome of mHealth interventions and select outcome measures accordingly. Greater transparency facilitates the interpretation of results and conclusions about the real-world evidence of mobile health in breast cancer care.


Assuntos
Neoplasias da Mama , Aplicativos Móveis , Telemedicina , Humanos , Feminino , Neoplasias da Mama/terapia , Qualidade de Vida , Atenção à Saúde , Telemedicina/métodos
6.
IEEE J Transl Eng Health Med ; 10: 2800109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865751

RESUMO

OBJECTIVE: Clinical urine tests are a key component of prenatal care. As of now, urine test strips are evaluated through a time consuming, often error-prone and operator-dependent visual color comparison of test strips and reference cards by medical staff. METHODS AND PROCEDURES: This work presents an automated pipeline for urinalysis with urine test strips using smartphone camera images in home environments, combining several image processing and color combination techniques. Our approach is applicable to off-the-shelf test strips in home conditions with no additional hardware required. For development and evaluation of our pipeline we collected image data from two sources: i) A user study (26 participants, 150 images) and ii) a lab study (135 images). RESULTS: We trained a region-based convolutional neural network that is able to detect the urine test strip location and orientation in images with a wide variety of light conditions, backgrounds and perspectives with an accuracy of 85.5%. The reference card can be robustly detected through a feature matching approach in 98.6% of the images. Color comparison by Hue channel (0.81 F1-Score), Matching factor (0.80 F1-Score) and Euclidean distance (0.70 F1-Score) were evaluated to determine the urinalysis results. CONCLUSION: We show that an automated smartphone-based colorimetric analysis of urine test strips in a home environment is feasible. It facilitates examinations and provides the possibility to shift care into an at-home environment. CLINICAL IMPACT: The findings demonstrate that routine urine examinations can be transferred into the home environment using a smartphone. Simultaneously, human error is avoided, accuracy is increased and medical staff is relieved.


Assuntos
Smartphone , Urinálise , Colorimetria , Feminino , Humanos , Gravidez , Cuidado Pré-Natal , Urinálise/métodos
7.
JMIR Form Res ; 6(3): e33635, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35230250

RESUMO

BACKGROUND: Fitness trackers and smart watches are frequently used to collect data in longitudinal medical studies. They allow continuous recording in real-life settings, potentially revealing previously uncaptured variabilities of biophysiological parameters and diseases. Adequate device accuracy is a prerequisite for meaningful research. OBJECTIVE: This study aims to assess the heart rate recording accuracy in two previously unvalidated devices: Fitbit Charge 4 and Samsung Galaxy Watch Active2. METHODS: Participants performed a study protocol comprising 5 resting and sedentary, 2 low-intensity, and 3 high-intensity exercise phases, lasting an average of 19 minutes 27 seconds. Participants wore two wearables simultaneously during all activities: Fitbit Charge 4 and Samsung Galaxy Watch Active2. Reference heart rate data were recorded using a medically certified Holter electrocardiogram. The data of the reference and evaluated devices were synchronized and compared at 1-second intervals. The mean, mean absolute error, mean absolute percentage error, Lin concordance correlation coefficient, Pearson correlation coefficient, and Bland-Altman plots were analyzed. RESULTS: A total of 23 healthy adults (mean age 24.2, SD 4.6 years) participated in our study. Overall, and across all activities, the Fitbit Charge 4 slightly underestimated the heart rate, whereas the Samsung Galaxy Watch Active2 overestimated it (-1.66 beats per minute [bpm]/3.84 bpm). The Fitbit Charge 4 achieved a lower mean absolute error during resting and sedentary activities (seated rest: 7.8 vs 9.4; typing: 8.1 vs 11.6; laying down [left]: 7.2 vs 9.4; laying down [back]: 6.0 vs 8.6; and walking slowly: 6.8 vs 7.7 bpm), whereas the Samsung Galaxy Watch Active2 performed better during and after low- and high-intensity activities (standing up: 12.3 vs 9.0; walking fast: 6.1 vs 5.8; stairs: 8.8 vs 6.9; squats: 15.7 vs 6.1; resting: 9.6 vs 5.6 bpm). CONCLUSIONS: Device accuracy varied with activity. Overall, both devices achieved a mean absolute percentage error of just <10%. Thus, they were considered to produce valid results based on the limits established by previous work in the field. Neither device reached sufficient accuracy during seated rest or keyboard typing. Thus, both devices may be eligible for use in respective studies; however, researchers should consider their individual study requirements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...