Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
4.
Mol Microbiol ; 26(5): 1109-23, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9426146

RESUMO

The Escherichia coli iron transport system via ferrichrome belongs to the group of ATP-dependent transporters that are widely distributed in prokaryotes and eukaryotes. Transport across the cytoplasmic membrane is mediated by three proteins: FhuD in the periplasm, FhuB in the cytoplasmic membrane and FhuC (ATPase) associated with the inside of the cytoplasmic membrane. Interaction of FhuD with FhuB was studied in vitro with biotinylated synthetic 10 residue and 20-24 residue peptides of FhuB by determining the activity of beta-galactosidase linked to the peptides via streptavidin. Peptides identical in sequence to only one of the four periplasmic loops (loop 2), predicted by a transmembrane model of FhuB, and peptides representing a transmembrane segment and part of the adjacent cytoplasmic loop 7 of FhuB bound to FhuD. Decapeptides were transferred into the periplasm of cells through a FhuA deletion derivative that forms permanently open channels three times as large as the porins in the outer membrane. FhuB peptides that bound to FhuD inhibited ferrichrome transport, while peptides that did not bind to FhuD did not affect transport. These data led us to propose that the periplasmic FhuD interacts with a transmembrane region and the cytoplasmic segment 7 of FhuB. The transmembrane region may be part of a pore through which a portion of FhuD inserts into the cytoplasmic membrane during transport. The cytoplasmic segment 7 of FhuB contains the conserved amino acid sequence EAA...G (in FhuB DTA ...G) found in ABC transporters, which is predicted to interact with the cytoplasmic FhuC ATPase. Triggering of ATP hydrolysis by substrate-loaded FhuD may occur by physical interaction between FhuD and FhuC, which bind close to each other on loop 7. Although FhuB consists of two homologous halves, FhuB(N) and FhuB(C), the sites identified for FhuD-mediated ferrichrome transport are asymmetrically arranged.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Compostos Férricos/metabolismo , Ácidos Hidroxâmicos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Proteínas Periplásmicas de Ligação , Transporte Biológico , Membrana Celular/metabolismo , Citoplasma , Ferricromo , Mutagênese , Mapeamento de Peptídeos
5.
J Pept Sci ; 1(3): 191-200, 1995.
Artigo em Inglês | MEDLINE | ID: mdl-9222996

RESUMO

Cleavage and kinetic studies have been carried out using commercially obtained H-Tyr(tBu)-5-(4'-aminomethyl-3',5'-dimethoxyphenoxy)valeric acid-TentaGelS (H-Tyr(tBu)-4-ADPV-TentaGelS) and H-Tyr (tBu)-4-ADPV-Ala-aminomethyl-resin (H-Tyr(tBu)-4-ADPV-AM-resin) prepared from commercially available resin and loaded with commercially available Fmoc-4-ADPV-OH amide anchor. Cleavage with pure trifluoroacetic acid (TFA) gave the intermediate H-Tyr-4-ADPV-NH2, which was then degraded to H-Tyr-NH2, and cleavage with TFA/dichloromethane (1:9) yielded H-Tyr-4-ADPV-NH2 which could be isolated in preparative amounts. Cleavage reactions with 15N-labelled H-Ala-4-ADPV-(15N)-Gly-AM-resin yielded the intermediate H-Ala-4-ADPV-NH2, which contained no 15N as demonstrated by 1H-NMR. The analysis of the commercial Fmoc-4-ADPV-OH amide anchor showed the presence of Fmoc-4-ADPV-4-ADPV-OH as an impurity in high amounts. This dimeric anchor molecule is the cause of formation of the anchor-linked peptide intermediate obtained during the cleavage from the resin. The particularly high acid-lability of the amide bond between the two ADPV moieties was utilized to synthesize sidechain and C-terminally 4-ADPV protected pentagastrin on a double-anchor resin, and to cleave it using 5% trifluoroacetic acid in dichloromethane. This method may offer a new way for the synthesis of protected peptide amides with improved solubility to be used in fragment condensation.


Assuntos
Peptídeos/química , Peptídeos/síntese química , Amidas/síntese química , Amidas/química , Sequência de Aminoácidos , Sítios de Ligação , Dimerização , Fluorenos , Indicadores e Reagentes , Cinética , Métodos , Estrutura Molecular , Pentagastrina/síntese química , Pentagastrina/química , Resinas Sintéticas , Solubilidade , Valeratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...