Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Acta Neuropathol ; 139(6): 1045-1070, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32219515

RESUMO

Tau protein accumulation is a common denominator of major dementias, but this process is inhomogeneous, even when triggered by the same germline mutation. We considered stochastic misfolding of human tau conformers followed by templated conversion of native monomers as an underlying mechanism and derived sensitive conformational assays to test this concept. Assessments of brains from aged TgTauP301L transgenic mice revealed a prodromal state and three distinct signatures for misfolded tau. Frontotemporal lobar degeneration (FTLD)-MAPT-P301L patients with different clinical phenotypes also displayed three signatures, two resembling those found in TgTauP301L mice. As physicochemical and cell bioassays confirmed diverse tau strains in the mouse and human brain series, we conclude that evolution of diverse tau conformers is intrinsic to the pathogenesis of this uni-allelic form of tauopathy. In turn, effective therapeutic interventions in FTLD will need to address evolving repertoires of misfolded tau species rather than singular, static molecular targets.


Assuntos
Degeneração Lobar Frontotemporal/genética , Proteínas tau/metabolismo , Idoso , Animais , Encéfalo/patologia , Feminino , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação/genética , Fenótipo , Tauopatias/patologia , Proteínas tau/genética
3.
Nat Neurosci ; 23(1): 21-31, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31792467

RESUMO

The clinical and pathological differences between synucleinopathies such as Parkinson's disease and multiple system atrophy have been postulated to stem from unique strains of α-synuclein aggregates, akin to what occurs in prion diseases. Here we demonstrate that inoculation of transgenic mice with different strains of recombinant or brain-derived α-synuclein aggregates produces clinically and pathologically distinct diseases. Strain-specific differences were observed in the signs of neurological illness, time to disease onset, morphology of cerebral α-synuclein deposits and the conformational properties of the induced aggregates. Moreover, different strains targeted distinct cellular populations and cell types within the brain, recapitulating the selective targeting observed among human synucleinopathies. Strain-specific clinical, pathological and biochemical differences were faithfully maintained after serial passaging, which implies that α-synuclein propagates via prion-like conformational templating. Thus, pathogenic α-synuclein exhibits key hallmarks of prion strains, which provides evidence that disease heterogeneity among the synucleinopathies is caused by distinct α-synuclein strains.


Assuntos
Encéfalo/patologia , Agregação Patológica de Proteínas , Sinucleinopatias , alfa-Sinucleína/química , alfa-Sinucleína/toxicidade , Animais , Camundongos , Camundongos Transgênicos , Agregados Proteicos/fisiologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Proteínas Recombinantes/toxicidade , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...