Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(6): 114302, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38824644

RESUMO

Resident cardiac macrophages are critical mediators of cardiac function. Despite their known importance to cardiac electrophysiology and tissue maintenance, there are currently no stem-cell-derived models of human engineered cardiac tissues (hECTs) that include resident macrophages. In this study, we made an induced pluripotent stem cell (iPSC)-derived hECT model with a resident population of macrophages (iM0) to better recapitulate the native myocardium and characterized their impact on tissue function. Macrophage retention within the hECTs was confirmed via immunofluorescence after 28 days of cultivation. The inclusion of iM0s significantly impacted hECT function, increasing contractile force production. A potential mechanism underlying these changes was revealed by the interrogation of calcium signaling, which demonstrated the modulation of ß-adrenergic signaling in +iM0 hECTs. Collectively, these findings demonstrate that macrophages significantly enhance cardiac function in iPSC-derived hECT models, emphasizing the need to further explore their contributions not only in healthy hECT models but also in the contexts of disease and injury.


Assuntos
Células-Tronco Pluripotentes Induzidas , Macrófagos , Contração Miocárdica , Engenharia Tecidual , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Macrófagos/metabolismo , Engenharia Tecidual/métodos , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Miocárdio/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Diferenciação Celular , Sinalização do Cálcio
2.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559188

RESUMO

Systemic lupus erythematosus (SLE) is a highly heterogenous autoimmune disease that affects multiple organs, including the heart. The mechanisms by which myocardial injury develops in SLE, however, remain poorly understood. Here we engineered human cardiac tissues and cultured them with IgG fractions containing autoantibodies from SLE patients with and without myocardial involvement. We observed unique binding patterns of IgG from two patient subgroups: (i) patients with severe myocardial inflammation exhibited enhanced binding to apoptotic cells within cardiac tissues subjected to stress, and (ii) patients with systolic dysfunction exhibited enhanced binding to the surfaces of viable cardiomyocytes. Functional assays and RNA sequencing (RNA-seq) revealed that IgGs from patients with systolic dysfunction exerted direct effects on engineered tissues in the absence of immune cells, altering tissue cellular composition, respiration and calcium handling. Autoantibody target characterization by phage immunoprecipitation sequencing (PhIP-seq) confirmed distinctive IgG profiles between patient subgroups. By coupling IgG profiling with cell surface protein analyses, we identified four pathogenic autoantibody candidates that may directly alter the function of cells within the myocardium. Taken together, these observations provide insights into the cellular processes of myocardial injury in SLE that have the potential to improve patient risk stratification and inform the development of novel therapeutic strategies.

3.
IEEE Open J Eng Med Biol ; 5: 238-249, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606403

RESUMO

Goal: Contractile response and calcium handling are central to understanding cardiac function and physiology, yet existing methods of analysis to quantify these metrics are often time-consuming, prone to mistakes, or require specialized equipment/license. We developed BeatProfiler, a suite of cardiac analysis tools designed to quantify contractile function, calcium handling, and force generation for multiple in vitro cardiac models and apply downstream machine learning methods for deep phenotyping and classification. Methods: We first validate BeatProfiler's accuracy, robustness, and speed by benchmarking against existing tools with a fixed dataset. We further confirm its ability to robustly characterize disease and dose-dependent drug response. We then demonstrate that the data acquired by our automatic acquisition pipeline can be further harnessed for machine learning (ML) analysis to phenotype a disease model of restrictive cardiomyopathy and profile cardioactive drug functional response. To accurately classify between these biological signals, we apply feature-based ML and deep learning models (temporal convolutional-bidirectional long short-term memory model or TCN-BiLSTM). Results: Benchmarking against existing tools revealed that BeatProfiler detected and analyzed contraction and calcium signals better than existing tools through improved sensitivity in low signal data, reduction in false positives, and analysis speed increase by 7 to 50-fold. Of signals accurately detected by published methods (PMs), BeatProfiler's extracted features showed high correlations to PMs, confirming that it is reliable and consistent with PMs. The features extracted by BeatProfiler classified restrictive cardiomyopathy cardiomyocytes from isogenic healthy controls with 98% accuracy and identified relax90 as a top distinguishing feature in congruence with previous findings. We also show that our TCN-BiLSTM model was able to classify drug-free control and 4 cardiac drugs with different mechanisms of action at 96% accuracy. We further apply Grad-CAM on our convolution-based models to identify signature regions of perturbations by these drugs in calcium signals. Conclusions: We anticipate that the capabilities of BeatProfiler will help advance in vitro studies in cardiac biology through rapid phenotyping, revealing mechanisms underlying cardiac health and disease, and enabling objective classification of cardiac disease and responses to drugs.

4.
Biomaterials ; 301: 122267, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633022

RESUMO

Cosmic radiation is the most serious risk that will be encountered during the planned missions to the Moon and Mars. There is a compelling need to understand the effects, safety thresholds, and mechanisms of radiation damage in human tissues, in order to develop measures for radiation protection during extended space travel. As animal models fail to recapitulate the molecular changes in astronauts, engineered human tissues and "organs-on-chips" are valuable tools for studying effects of radiation in vitro. We have developed a bioengineered tissue platform for studying radiation damage in individualized settings. To demonstrate its utility, we determined the effects of radiation using engineered models of two human tissues known to be radiosensitive: engineered cardiac tissues (eCT, a target of chronic radiation damage) and engineered bone marrow (eBM, a target of acute radiation damage). We report the effects of high-dose neutrons, a proxy for simulated galactic cosmic rays, on the expression of key genes implicated in tissue responses to ionizing radiation, phenotypic and functional changes in both tissues, and proof-of-principle application of radioprotective agents. We further determined the extent of inflammatory, oxidative stress, and matrix remodeling gene expression changes, and found that these changes were associated with an early hypertrophic phenotype in eCT and myeloid skewing in eBM. We propose that individualized models of human tissues have potential to provide insights into the effects and mechanisms of radiation during deep-space missions and allow testing of radioprotective measures.


Assuntos
Radiação Cósmica , Humanos , Engenharia Biomédica , Radiação Cósmica/efeitos adversos , Hipertrofia
5.
Cell Rep Med ; 4(3): 100976, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36921598

RESUMO

Restrictive cardiomyopathy (RCM) is defined as increased myocardial stiffness and impaired diastolic relaxation leading to elevated ventricular filling pressures. Human variants in filamin C (FLNC) are linked to a variety of cardiomyopathies, and in this study, we investigate an in-frame deletion (c.7416_7418delGAA, p.Glu2472_Asn2473delinAsp) in a patient with RCM. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with this variant display impaired relaxation and reduced calcium kinetics in 2D culture when compared with a CRISPR-Cas9-corrected isogenic control line. Similarly, mutant engineered cardiac tissues (ECTs) demonstrate increased passive tension and impaired relaxation velocity compared with isogenic controls. High-throughput small-molecule screening identifies phosphodiesterase 3 (PDE3) inhibition by trequinsin as a potential therapy to improve cardiomyocyte relaxation in this genotype. Together, these data demonstrate an engineered cardiac tissue model of RCM and establish the translational potential of this precision medicine approach to identify therapeutics targeting myocardial relaxation.


Assuntos
Cardiomiopatia Restritiva , Humanos , Cardiomiopatia Restritiva/genética , Engenharia Tecidual , Miócitos Cardíacos , Miocárdio , Descoberta de Drogas
6.
J Cyst Fibros ; 21(6): 1027-1035, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35525782

RESUMO

BACKGROUND: Manifestations of cystic fibrosis, although well-characterized in the proximal airways, are understudied in the distal lung. Characterization of the cystic fibrosis lung 'matrisome' (matrix proteome) has not been previously described, and could help identify biomarkers and inform therapeutic strategies. METHODS: We performed liquid chromatography-mass spectrometry, gene ontology analysis, and multi-modal imaging, including histology, immunofluorescence, and electron microscopy for a comprehensive evaluation of distal human lung extracellular matrix (matrix) structure and composition in end-stage cystic fibrosis. RESULTS: Quantitative proteomic profiling identified sixty-eight (68) matrix constituents with significantly altered expression in end-stage cystic fibrosis. Over 90% of significantly different matrix peptides detected, including structural and basement membrane proteins, were expressed at lower levels in cystic fibrosis. However, the total abundance of matrix in cystic fibrosis lungs was not significantly different from control lungs, suggesting that cystic fibrosis leads to loss of diversity among lung matrix proteins rather than an absolute loss of matrix. Visualization of distal lung matrix via immunofluorescence and electron microscopy revealed pathological remodeling of distal lung tissue architecture and loss of alveolar basement membrane, consistent with significantly altered pathways identified by gene ontology analysis. CONCLUSIONS: Dysregulation of matrix organization and aberrant wound healing pathways are associated with loss of matrix protein diversity and obliteration of distal lung tissue structure in end-stage cystic fibrosis. While many therapeutics aim to functionally restore defective cystic fibrosis transmembrane conductance regulator (CFTR), drugs that target dysregulated matrix pathways may serve as adjunct interventions to support lung recovery.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/terapia , Proteômica , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Pulmão/metabolismo
7.
Nat Rev Mater ; 7(4): 295-313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34691764

RESUMO

The convergence of tissue engineering and patient-specific stem cell biology has enabled the engineering of in vitro tissue models that allow the study of patient-tailored treatment modalities. However, sex-related disparities in health and disease, from systemic hormonal influences to cellular-level differences, are often overlooked in stem cell biology, tissue engineering and preclinical screening. The cardiovascular system, in particular, shows considerable sex-related differences, which need to be considered in cardiac tissue engineering. In this Review, we analyse sex-related properties of the heart muscle in the context of health and disease, and discuss a framework for including sex-based differences in human cardiac tissue engineering. We highlight how sex-based features can be implemented at the cellular and tissue levels, and how sex-specific cardiac models could advance the study of cardiovascular diseases. Finally, we define design criteria for sex-specific cardiac tissue engineering and provide an outlook to future research possibilities beyond the cardiovascular system.

8.
ACS Biomater Sci Eng ; 8(11): 4598-4604, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-34878769

RESUMO

The field of tissue engineering has evolved from its early days of engineering tissue substitutes to current efforts at building human tissues for regenerative medicine and mechanistic studies of tissue disease, injury, and regeneration. Advances in bioengineering, material science, and stem cell biology have enabled major developments in the field. In this perspective, we reflect on the September 2021 virtual Next Generation Tissue Engineering symposium and trainee workshop, as well as our projections for the field over the next 15 years.


Assuntos
Medicina Regenerativa , Engenharia Tecidual , Humanos , Células-Tronco
9.
ACS Biomater Sci Eng ; 7(11): 5215-5229, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34668692

RESUMO

Engineered cardiac tissues derived from human induced pluripotent stem cells (iPSCs) are increasingly used for drug discovery, pharmacology and in models of development and disease. While there are numerous platforms to engineer cardiac tissues, they often require expensive and nonconventional equipment and utilize complex video-processing algorithms. As a result, only specialized academic laboratories have been able to harness this technology. In addition, methodologies and tissue features have been challenging to reproduce between different groups and models. Here, we describe a facile technology (milliPillar) that covers the entire pipeline required for studies of engineered cardiac tissues. We include methodologies for (i) platform fabrication, (ii) cardiac tissue generation, (iii) electrical stimulation, (iv) automated real-time data acquisition, and (v) advanced video analyses. We validate these methodologies and demonstrate the versatility of the platform by showcasing the fabrication of tissues in different hydrogel materials and using cardiomyocytes derived from different iPSC lines in combination with different types of stromal cells. We also validate the long-term culture of tissues within the platform and provide protocols for automated analysis of force generation and calcium flux using both brightfield and fluorescence imaging. Lastly, we demonstrate the compatibility of the milliPillar platform with electromechanical stimulation to enhance cardiac tissue function. We expect that this resource will provide a valuable and user-friendly tool for the generation and real-time assessment of engineered human cardiac tissues for basic and translational studies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Engenharia Tecidual , Humanos , Hidrogéis , Miócitos Cardíacos
10.
Cell Stem Cell ; 28(6): 993-1015, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34087161

RESUMO

Tissue engineering has markedly matured since its early beginnings in the 1980s. In addition to the original goal to regenerate damaged organs, the field has started to explore modeling of human physiology "in a dish." Induced pluripotent stem cell (iPSC) technologies now enable studies of organ regeneration and disease modeling in a patient-specific context. We discuss the potential of "organ-on-a-chip" systems to study regenerative therapies with focus on three distinct organ systems: cardiac, respiratory, and hematopoietic. We propose that the combinatorial studies of human tissues at these two scales would help realize the translational potential of tissue engineering.


Assuntos
Células-Tronco Pluripotentes Induzidas , Medicina Regenerativa , Coração , Humanos , Dispositivos Lab-On-A-Chip , Engenharia Tecidual
11.
Adv Funct Mater ; 30(37)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33708027

RESUMO

From micro-scaled capillaries to millimeter-sized arteries and veins, human vasculature spans multiple scales and cell types. The convergence of bioengineering, materials science, and stem cell biology has enabled tissue engineers to recreate the structure and function of different hierarchical levels of the vascular tree. Engineering large-scale vessels has been pursued over the past thirty years to replace or bypass damaged arteries, arterioles, and venules, and their routine application in the clinic may become a reality in the near future. Strategies to engineer meso- and microvasculature have been extensively explored to generate models to study vascular biology, drug transport, and disease progression, as well as for vascularizing engineered tissues for regenerative medicine. However, bioengineering of large-scale tissues and whole organs for transplantation, have failed to result in clinical translation due to the lack of proper integrated vasculature for effective oxygen and nutrient delivery. The development of strategies to generate multi-scale vascular networks and their direct anastomosis to host vasculature would greatly benefit this formidable goal. In this review, we discuss design considerations and technologies for engineering millimeter-, meso-, and micro-scale vessels. We further provide examples of recent state-of-the-art strategies to engineer multi-scale vasculature. Finally, we identify key challenges limiting the translation of vascularized tissues and offer our perspective on future directions for exploration.

12.
Nanomaterials (Basel) ; 9(5)2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31052595

RESUMO

Hydrogels are widely used materials for cardiac tissue engineering. However, once the cells are encapsulated within hydrogels, mass transfer to the core of the engineered tissue is limited, and cell viability is compromised. Here, we report on the development of a channeled ECM-based nanofibrous hydrogel for engineering vascularized cardiac tissues. An omentum hydrogel was mixed with cardiac cells, patterned to create channels and closed, and then seeded with endothelial cells to form open cellular lumens. A mathematical model was used to evaluate the necessity of the channels for maintaining cell viability and the true potential of the vascularized hydrogel to form a viable cardiac patch was studied.

13.
Adv Mater ; 31(10): e1807285, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30644148

RESUMO

Bacterial type IV pili (T4P) are polymeric protein nanofibers that have diverse biological roles. Their unique physicochemical properties mark them as a candidate biomaterial for various applications, yet difficulties in producing native T4P hinder their utilization. Recent effort to mimic the T4P of the metal-reducing Geobacter sulfurreducens bacterium led to the design of synthetic peptide building blocks, which self-assemble into T4P-like nanofibers. Here, it is reported that the T4P-like peptide nanofibers efficiently bind metal oxide particles and reduce Au ions analogously to their native counterparts, and thus give rise to versatile and multifunctional peptide-metal nanocomposites. Focusing on the interaction with Au ions, a combination of experimental and computational methods provides mechanistic insight into the formation of an exceptionally dense Au nanoparticle (AuNP) decoration of the nanofibers. Characterization of the thus-formed peptide-AuNPs nanocomposite reveals enhanced thermal stability, electrical conductivity from the single-fiber level up, and substrate-selective adhesion. Exploring its potential applications, it is demonstrated that the peptide-AuNPs nanocomposite can act as a reusable catalytic coating or form self-supporting immersible films of desired shapes. The films scaffold the assembly of cardiac cells into synchronized patches, and present static charge detection capabilities at the macroscale. The study presents a novel T4P-inspired biometallic material.


Assuntos
Nanopartículas Metálicas/química , Nanocompostos/química , Nanofibras/química , Peptídeos/química , Materiais Biocompatíveis/química , Condutividade Elétrica , Fímbrias Bacterianas , Geobacter
14.
Adv Mater ; 31(1): e1803895, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30406960

RESUMO

Despite incremental improvements in the field of tissue engineering, no technology is currently available for producing completely autologous implants where both the cells and the scaffolding material are generated from the patient, and thus do not provoke an immune response that may lead to implant rejection. Here, a new approach is introduced to efficiently engineer any tissue type, which its differentiation cues are known, from one small tissue biopsy. Pieces of omental tissues are extracted from patients and, while the cells are reprogrammed to become induced pluripotent stem cells, the extracellular matrix is processed into an immunologically matching, thermoresponsive hydrogel. Efficient cell differentiation within a large 3D hydrogel is reported, and, as a proof of concept, the generation of functional cardiac, cortical, spinal cord, and adipogenic tissue implants is demonstrated. This versatile bioengineering approach may assist to regenerate any tissue and organ with a minimal risk for immune rejection.


Assuntos
Hidrogéis/química , Próteses e Implantes , Animais , Diferenciação Celular , Reprogramação Celular , Células Endoteliais/citologia , Células Endoteliais/imunologia , Células Endoteliais/transplante , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/citologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/transplante , Omento/citologia , Omento/imunologia , Omento/metabolismo , Suínos , Engenharia Tecidual , Alicerces Teciduais , Transplante Autólogo
15.
J Control Release ; 281: 189-195, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29782947

RESUMO

The capability to on-line sense tissue function, provide stimulation to control contractility and efficiently release drugs within an engineered tissue microenvironment may enhance tissue assembly and improve the therapeutic outcome of implanted engineered tissues. To endow cardiac patches with such capabilities we developed elastic, biodegradable, electronic scaffolds. The scaffolds were composed of electrospun albumin fibers that served as both a substrate and a passivation layer for evaporated gold electrodes. Cardiomyocytes seeded onto the electronic scaffolds organized into a functional cardiac tissue and their function was recorded on-line. Furthermore, the electronic scaffolds enabled to actuate the engineered tissue to control its function and trigger the release of drugs. Post implantation, these electronic scaffolds degraded, leading to the dissociation of the inorganic material from within the scaffold. Such technology can be built upon to create a variety of degradable devices for tissue engineering of various tissues, as well as pristine cell-free devices with electronic components for short-term in vivo use.


Assuntos
Miócitos Cardíacos/citologia , Alicerces Teciduais/química , Albuminas/química , Animais , Materiais Biocompatíveis/química , Adesão Celular , Proliferação de Células , Dexametasona/química , Portadores de Fármacos , Liberação Controlada de Fármacos , Eletrodos , Ouro/química , Coração , Masculino , Miócitos Cardíacos/química , Miócitos Cardíacos/metabolismo , Polímeros/química , Pirróis/química , Ratos Sprague-Dawley , Propriedades de Superfície , Engenharia Tecidual/métodos
16.
Nano Lett ; 18(7): 4069-4073, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29406721

RESUMO

Although cardiac patches hold a promise for repairing the infarcted heart, their integration with the myocardium by sutures may cause further damage to the diseased organ. To address this issue, we developed facile and safe, suture-free technology for the attachment of engineered tissues to organs. Here, nanocomposite scaffolds comprised of albumin electrospun fibers and gold nanorods (AuNRs) were developed. Cardiac cells were seeded within the scaffolds and assembled into a functioning patch. The engineered tissue was then positioned on the myocardium and irradiated with a near IR laser (808 nm). The AuNRs were able to absorb the light and convert it to thermal energy, which locally changed the molecular structure of the fibrous scaffold, and strongly, but safely, attached it to the wall of the heart. Such hybrid biomaterials can be used in the future to integrate any engineered tissue with any defected organs, while minimizing the risk of additional injury for the patient, caused by the conventional stitching methods.


Assuntos
Coração/fisiopatologia , Infarto do Miocárdio/cirurgia , Nanocompostos/uso terapêutico , Nanotubos/química , Albuminas/química , Albuminas/uso terapêutico , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Procedimentos Cirúrgicos Cardíacos , Modelos Animais de Doenças , Ouro/química , Ouro/uso terapêutico , Humanos , Infarto do Miocárdio/patologia , Nanocompostos/química , Ratos , Suturas/efeitos adversos , Engenharia Tecidual , Alicerces Teciduais/química
17.
Curr Opin Biotechnol ; 47: 23-29, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28578251

RESUMO

As cardiac disease takes a higher toll with each passing year, the need for new therapies to deal with the scarcity in heart donors becomes ever more pressing. Cardiac tissue engineering holds the promise of creating functional replacement tissues to repair heart tissue damage. In an attempt to bridge the gap between the lab and clinical realization, the field has made major strides. In this review, we will discuss state of the art technologies such as layer-by-layer assembly, bioprinting and bionic tissue engineering, all developed to overcome some of the major hurdles faced in the field.


Assuntos
Coração/fisiologia , Engenharia Tecidual/métodos , Biônica , Bioimpressão , Humanos , Impressão Tridimensional
18.
Regen Med ; 12(3): 275-284, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28498093

RESUMO

The field of cardiac tissue engineering aims at replacing the scar tissue created after a patient has suffered from a myocardial infarction. Various technologies have been developed toward fabricating a functional engineered tissue that closely resembles that of the native heart. While the field continues to grow and techniques for better tissue fabrication continue to emerge, several hurdles still remain to be overcome. In this review we will focus on several key advances and recent technologies developed in the field, including biomimicking the natural extracellular matrix structure and enhancing the transfer of the electrical signal. We will also discuss recent developments in the engineering of bionic cardiac tissues which integrate the fields of tissue engineering and electronics to monitor and control tissue performance.


Assuntos
Bioprótese , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Engenharia Tecidual/métodos , Animais , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/terapia , Humanos , Miocárdio/patologia , Miócitos Cardíacos/patologia
19.
Proc Natl Acad Sci U S A ; 114(8): 1898-1903, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28167795

RESUMO

In cardiac tissue engineering cells are seeded within porous biomaterial scaffolds to create functional cardiac patches. Here, we report on a bottom-up approach to assemble a modular tissue consisting of multiple layers with distinct structures and functions. Albumin electrospun fiber scaffolds were laser-patterned to create microgrooves for engineering aligned cardiac tissues exhibiting anisotropic electrical signal propagation. Microchannels were patterned within the scaffolds and seeded with endothelial cells to form closed lumens. Moreover, cage-like structures were patterned within the scaffolds and accommodated poly(lactic-co-glycolic acid) (PLGA) microparticulate systems that controlled the release of VEGF, which promotes vascularization, or dexamethasone, an anti-inflammatory agent. The structure, morphology, and function of each layer were characterized, and the tissue layers were grown separately in their optimal conditions. Before transplantation the tissue and microparticulate layers were integrated by an ECM-based biological glue to form thick 3D cardiac patches. Finally, the patches were transplanted in rats, and their vascularization was assessed. Because of the simple modularity of this approach, we believe that it could be used in the future to assemble other multicellular, thick, 3D, functional tissues.


Assuntos
Materiais Biocompatíveis/química , Doenças Cardiovasculares/cirurgia , Transplante de Coração/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Adesivos/química , Albuminas/química , Animais , Células Endoteliais , Humanos , Ácido Láctico/química , Masculino , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porosidade , Ratos , Ratos Sprague-Dawley
20.
Nat Mater ; 15(6): 679-85, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26974408

RESUMO

In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.


Assuntos
Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Nanocompostos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/cirurgia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...