Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(7): 12004-12011, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571035

RESUMO

We demonstrate ultraviolet-to-mid-infrared supercontinuum generation (SCG) inside thin-film lithium niobate (TFLN) on sapphire nanowaveguides. This platform combines wavelength-scale confinement and quasi-phasematched nonlinear interactions with a broad transparency window extending from 350 to 4500 nm. Our approach relies on group-velocity-matched second-harmonic generation, which uses an interplay between saturation and a small phase-mismatch to generate a spectrally broadened fundamental and second harmonic using only a few picojoules of in-coupled fundamental pulse energies. As the on-chip pulse energy is increased to tens of picojoules, these nanowaveguides generate harmonics up to the fifth order by a cascade of sum-frequency mixing processes. For in-coupled pulse energies in excess of 25 picojoules, these harmonics merge together to form a supercontinuum spanning 360-2660 nm. We use the overlap between the first two harmonic spectra to detect f-2f beatnotes of the driving laser directly at the waveguide output, which verifies the coherence of the generated harmonics. These results establish TFLN-on-sapphire as a viable platform for generating ultra-broadband coherent light spanning from the ultraviolet to mid-infrared spectral regions.

2.
Phys Rev Lett ; 129(15): 153901, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36269955

RESUMO

While non-Hermitian systems are normally constructed through incoherent coupling to a larger environment, recent works have shown that under certain conditions coherent couplings can be used to similar effect. We show that this new paradigm enables the behavior associated with the PT-symmetric phase of a non-Hermitian subsystem to control the containing Hermitian system through the coherent couplings. This is achieved in parametric nonlinear wave mixing where simultaneous second harmonic generation replaces the role of loss to induce non-Hermitian behavior that persists through a full exchange of power within the Hermitian system. These findings suggest a new approach for the engineering of dynamics where energy recovery and sustainability are of importance that could be of significance for photonics and laser science.

3.
Opt Express ; 29(19): 30590-30609, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34614781

RESUMO

We introduce a concept for efficient optical parametric amplification (OPA) based on simultaneously phase-matched idler second harmonic generation (SHG), which together exhibits the dynamical behavior of parametric amplification but with damped conversion-back-conversion cycles. This enables amplification efficiency exceeding that of conventional OPA by several-fold for femtosecond and picosecond signal pulses with bell-shaped intensity profiles by allowing a near-uniform spatiotemporal depletion of the pump wave. We develop a Duffing oscillator model that unifies the description of conventional OPA and amplification accompanied by idler photon displacement by either linear absorption or SHG. A spatiotemporal analysis of devices based on birefringent or superlattice quasi-phase matching in common bulk media predicts energy conversion up to 55%.

4.
Phys Rev Lett ; 124(15): 153902, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357029

RESUMO

We observe clear evidence of adiabatic passage between photon populations via a four-wave mixing process, implemented through a dispersion sweep arranged by a core diameter taper of an optical fiber. Photonic rapid adiabatic passage through the cubic electric susceptibility thus opens precise control of frequency translation between broadband light fields to all common optical media. Areas of potential impact include optical fiber and on-chip waveguide platforms for quantum information, ultrafast spectroscopy and metrology, and extreme light-matter interaction science.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...