Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38496428

RESUMO

Pathogen epidemics are key threats to human and wildlife health. Across systems, host protection from pathogens following initial exposure is often incomplete, resulting in recurrent epidemics through partially-immune hosts. Variation in population-level protection has important consequences for epidemic dynamics, but whether acquired protection influences host heterogeneity in susceptibility and its epidemiological consequences remains unexplored. We experimentally investigated whether prior exposure (none, low-dose, or high-dose) to a bacterial pathogen alters host heterogeneity in susceptibility among songbirds. Hosts with no prior pathogen exposure had little variation in protection, but heterogeneity in susceptibility was significantly augmented by prior pathogen exposure, with the highest variability detected in hosts given high-dose prior exposure. An epidemiological model parameterized with experimental data found that heterogeneity in susceptibility from prior exposure more than halved epidemic sizes compared with a homogeneous population with identical mean protection. However, because infection-induced mortality was also greatly reduced in hosts with prior pathogen exposure, reductions in epidemic size were smaller than expected in hosts with prior exposure. These results highlight the importance of variable protection from prior exposure and/or vaccination in driving host heterogeneity and epidemiological dynamics.

2.
Pathogens ; 12(2)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36839619

RESUMO

Despite extensive work on both insect disease and plant reproduction, there is little research on the intersection of the two. Insect-infecting pathogens could disrupt the pollination process by affecting pollinator population density or traits. Pathogens may also infect insect herbivores and change herbivory, potentially altering resource allocation to plant reproduction. We conducted a meta-analysis to (1) summarize the literature on the effects of pathogens on insect pollinators and herbivores and (2) quantify the extent to which pathogens affect insect traits, with potential repercussions for plant reproduction. We found 39 articles that fit our criteria for inclusion, extracting 218 measures of insect traits for 21 different insect species exposed to 25 different pathogens. We detected a negative effect of pathogen exposure on insect traits, which varied by host function: pathogens had a significant negative effect on insects that were herbivores or carried multiple functions but not on insects that solely functioned as pollinators. Particular pathogen types were heavily studied in certain insect orders, with 7 of 11 viral pathogen studies conducted in Lepidoptera and 5 of 9 fungal pathogen studies conducted in Hymenoptera. Our results suggest that most studies have focused on a small set of host-pathogen pairs. To understand the implications for plant reproduction, future work is needed to directly measure the effects of pathogens on pollinator effectiveness.

3.
Sci Rep ; 9(1): 20348, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889059

RESUMO

The host immune response can exert strong selective pressure on pathogen virulence, particularly when host protection against reinfection is incomplete. Since emerging in house finch populations, the bacterial pathogen Mycoplasma gallisepticum (MG) has been increasing in virulence. Repeated exposure to low-doses of MG, a proxy for what birds likely experience while foraging, provides significant but incomplete protection against reinfection. Here we sought to determine if the within-host, pathogen load advantage of high virulence is mediated by the degree of prior pathogen exposure, and thus the extent of immune memory. We created variation in host immunity by experimentally inoculating wild-caught, MG-naïve house finches with varying doses and number of exposures of a single pathogen strain of intermediate virulence. Following recovery from priming exposures, individuals were challenged with one of three MG strains of distinct virulence. We found that the quantitative pathogen load advantage of high virulence was strongly mediated by the degree of prior exposure. The greatest within-host load advantage of virulence was seen in hosts given low-dose priming exposures, akin to what many house finches likely experience while foraging. Our results show that incomplete host immunity produced by low-level prior exposure can create a within-host environment that favors more virulent pathogens.


Assuntos
Bactérias , Doenças das Aves/microbiologia , Aves/microbiologia , Exposição Ambiental , Interações Hospedeiro-Patógeno , Animais , Carga Bacteriana , Evolução Biológica , Doenças das Aves/diagnóstico , Mycoplasma gallisepticum , Índice de Gravidade de Doença , Virulência
4.
Science ; 359(6379): 1030-1033, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29496878

RESUMO

Immune memory evolved to protect hosts from reinfection, but incomplete responses that allow future reinfection may inadvertently select for more-harmful pathogens. We present empirical and modeling evidence that incomplete immunity promotes the evolution of higher virulence in a natural host-pathogen system. We performed sequential infections of house finches with Mycoplasma gallisepticum strains of various levels of virulence. Virulent bacterial strains generated stronger host protection against reinfection than less virulent strains and thus excluded less virulent strains from infecting previously exposed hosts. In a two-strain model, the resulting fitness advantage selected for an almost twofold increase in pathogen virulence. Thus, the same immune systems that protect hosts from infection can concomitantly drive the evolution of more-harmful pathogens in nature.


Assuntos
Doenças das Aves/microbiologia , Doenças das Aves/prevenção & controle , Tentilhões , Interações Hospedeiro-Patógeno/imunologia , Memória Imunológica , Infecções por Mycoplasma/microbiologia , Mycoplasma gallisepticum/genética , Mycoplasma gallisepticum/patogenicidade , Animais , Evolução Molecular , Modelos Imunológicos , Virulência/genética
5.
Am Nat ; 186(6): 797-806, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26655986

RESUMO

A pathogen's ability to persist in the environment is an ecologically important trait, and variation in this trait may promote coexistence of different pathogen strains. We asked whether naturally occurring isolates of the baculovirus that infects gypsy moth larvae varied in their overwinter environmental transmission and whether this variation was consistent with a trade-off or an upper limit to virulence that might promote pathogen diversity. We used experimental manipulations to replicate the natural overwinter infection process, using 16 field-collected isolates. Virus isolates varied substantially in the fraction of larvae infected, leading to differences in overwinter transmission rates. Furthermore, isolates that killed more larvae also had higher rates of early larval death in which no infectious particles were produced, consistent with a cost of high virulence. Our results thus support the existence of a cost that could impose an upper limit to virulence even in a highly virulent pathogen.


Assuntos
Larva/virologia , Mariposas/virologia , Nucleopoliedrovírus/fisiologia , Virulência , Animais , Vírus de Insetos/fisiologia , Michigan , Fenótipo , Estações do Ano , Viroses/transmissão
6.
Ecol Lett ; 18(11): 1252-1261, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26365355

RESUMO

Phenotypic variation is common in most pathogens, yet the mechanisms that maintain this diversity are still poorly understood. We asked whether continuous host variation in susceptibility helps maintain phenotypic variation, using experiments conducted with a baculovirus that infects gypsy moth (Lymantria dispar) larvae. We found that an empirically observed tradeoff between mean transmission rate and variation in transmission, which results from host heterogeneity, promotes long-term coexistence of two pathogen types in simulations of a population model. This tradeoff introduces an alternative strategy for the pathogen: a low-transmission, low-variability type can coexist with the high-transmission type favoured by classical non-heterogeneity models. In addition, this tradeoff can help explain the extensive phenotypic variation we observed in field-collected pathogen isolates, in traits affecting virus fitness including transmission and environmental persistence. Similar heterogeneity tradeoffs might be a general mechanism promoting phenotypic variation in any pathogen for which hosts vary continuously in susceptibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...