Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 28(1): 357-367, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34587083

RESUMO

Model checkers provide algorithms for proving that a mathematical model of a system satisfies a given specification. In case of a violation, a counterexample that shows the erroneous behavior is returned. Understanding these counterexamples is challenging, especially for hyperproperty specifications, i.e., specifications that relate multiple executions of a system to each other. We aim to facilitate the visual analysis of such counterexamples through our HyperVis tool, which provides interactive visualizations of the given model, specification, and counterexample. Within an iterative and interdisciplinary design process, we developed visualization solutions that can effectively communicate the core aspects of the model checking result. Specifically, we introduce graphical representations of binary values for improving pattern recognition, color encoding for better indicating related aspects, visually enhanced textual descriptions, as well as extensive cross-view highlighting mechanisms. Further, through an underlying causal analysis of the counterexample, we are also able to identify values that contributed to the violation and use this knowledge for both improved encoding and highlighting. Finally, the analyst can modify both the specification of the hyperproperty and the system directly within HyperVis and initiate the model checking of the new version. In combination, these features notably support the analyst in understanding the error leading to the counterexample as well as iterating the provided system and specification. We ran multiple case studies with HyperVis and tested it with domain experts in qualitative feedback sessions. The participants' positive feedback confirms the considerable improvement over the manual, text-based status quo and the value of the tool for explaining hyperproperties.

2.
IEEE Trans Vis Comput Graph ; 27(2): 1182-1192, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33052863

RESUMO

In this work we propose the combination of large interactive displays with personal head-mounted Augmented Reality (AR) for information visualization to facilitate data exploration and analysis. Even though large displays provide more display space, they are challenging with regard to perception, effective multi-user support, and managing data density and complexity. To address these issues and illustrate our proposed setup, we contribute an extensive design space comprising first, the spatial alignment of display, visualizations, and objects in AR space. Next, we discuss which parts of a visualization can be augmented. Finally, we analyze how AR can be used to display personal views in order to show additional information and to minimize the mutual disturbance of data analysts. Based on this conceptual foundation, we present a number of exemplary techniques for extending visualizations with AR and discuss their relation to our design space. We further describe how these techniques address typical visualization problems that we have identified during our literature research. To examine our concepts, we introduce a generic AR visualization framework as well as a prototype implementing several example techniques. In order to demonstrate their potential, we further present a use case walkthrough in which we analyze a movie data set. From these experiences, we conclude that the contributed techniques can be useful in exploring and understanding multivariate data. We are convinced that the extension of large displays with AR for information visualization has a great potential for data analysis and sense-making.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...