Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(27): 6136-6143, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37379133

RESUMO

Methylation of the C(2) carbon on imidazolium-based room temperature ionic liquids (RTILs) causes an unexpected increase in viscosity when paired with the anion bis(trifluoromethylsulfonamide) [Tf2N]-, but the viscosity decreases when the methylated imidazolium is paired with a tetracyanoborate [B(CN)4]- anion. This paper investigates these different observations in viscosity using the compensated Arrhenius formalism (CAF) for fluidity (inverse viscosity), which assumes fluidity to be a thermally activated process. CAF activation energies are determined for imidazolium [Tf2N]- and methylated imidazolium [Tf2N]- and compared to imidazolium [B(CN)4]- and methylated imidazolium [B(CN)4]-. The results show that the activation energy increases with methylation for [Tf2N]-, but it decreases with methylation for [B(CN)4]-. The CAF results also yield information concerning the entropy of activation, which are compared for the two systems.

2.
J Phys Chem B ; 120(37): 9959-68, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27580069

RESUMO

The location of the hydroxyl group in monohydroxy alcohols greatly affects the temperature dependence of the liquid structure due to hydrogen bonding. Temperature-dependent self-diffusion coefficients, fluidity (the inverse of viscosity), dielectric constant, and density have been measured for several 1-alcohols and 3-alcohols with varying alkyl chain lengths. The data are modeled using the compensated Arrhenius formalism (CAF). The CAF follows a modified transition state theory using an Arrhenius-like expression to describe the transport property, which consists of a Boltzmann factor containing an energy of activation, Ea, and an exponential prefactor containing the temperature-dependent solution dielectric constant, εs(T). Both 1- and 3-alcohols show the Ea of diffusion coefficients (approximately 43 kJ mol(-1)) is higher than the Ea of fluidity (approximately 35 kJ mol(-1)). The temperature dependence of the exponential prefactor in these associated liquids is explained using the dielectric constant and the Kirkwood-Frölich correlation factor, gk. It is argued that the dielectric constant must be used to account for the additional temperature dependence due to variations in the liquid structure (e.g., hydrogen bonding) for the CAF to accurately model the transport property.

3.
J Phys Chem B ; 117(17): 5330-7, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23527562

RESUMO

The molal conductivity of liquid electrolytes with low static dielectric constants (ε(s) < 10) decreases to a minimum at low concentrations (region I) and increases to a maximum at higher concentrations (region II) when plotted against the square root of the concentration. This behavior is investigated by applying the compensated Arrhenius formalism (CAF) to the molal conductivity, Λ, of a family of 1-alcohol electrolytes over a broad concentration range. A scaling procedure is applied that results in an energy of activation (E(a)) and an exponential prefactor (Λ0) that are both concentration dependent. It is shown that the increasing molal conductivity in region II results from the combined effect of (1) a decrease in the energy of activation calculated from the CAF, and (2) an inherent concentration dependence in the exponential prefactor that is partly due to the dielectric constant.

4.
J Phys Chem B ; 117(10): 2971-8, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23414431

RESUMO

The temperature dependence of viscosity (the reciprocal of fluidity) in polar liquids has been studied for over a century, but the available theoretical models have serious limitations. Consequently, the viscosity is often described with empirical equations using adjustable fitting parameters that offer no insight into the molecular mechanism of transport. We have previously reported a novel approach called the compensated Arrhenius formalism (CAF) to describe ionic conductivity, self-diffusion, and dielectric relaxation in terms of molecular and system properties. Here the CAF is applied to fluidity data of pure n-acetates, 2-ketones, n-nitriles, and n-alcohols over the temperature range 5-85 °C. The fluidity is represented as an Arrhenius-like expression that includes a static dielectric constant dependence in the exponential prefactor. The dielectric constant dependence results from the dependence of mass and charge transport on the molecular dipole moment and the solvent dipole density. The CAF is the only self-consistent description of fluid transport in polar liquids written solely in terms of molecular and system parameters. A scaling procedure is used to calculate the activation energy for transport. We find that the activation energies for fluidity of the aprotic liquids are comparable in value, whereas a higher average E(a) value is observed for the n-alcohol data. Finally, we contrast the molecular description of transport presented here with the conventional hydrodynamic model.

5.
J Phys Chem B ; 116(1): 71-6, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22145961

RESUMO

Conductivities and static dielectric constants for 0.0055 M tetrabutylammonium trifluoromethanesulfonate in n-butyl acetate, n-pentyl acetate, n-hexyl acetate, n-octyl acetate, and n-decyl acetate have been collected over the temperature range of 0-80 °C. Self-diffusion coefficients and static dielectric constants of pure acetates were obtained over the same temperature range. Both temperature-dependent diffusion coefficients and ionic conductivities of these pure acetates and dilute acetate solutions can be accurately described by the compensated Arrhenius formalism. Activation energies were calculated from compensated Arrhenius plots for both conductivity and diffusion data. Activation energies are higher for conductivity data of 0.0055 M TbaTf-acetates compared to diffusion data of pure acetates. The plot of the exponential prefactor versus the dielectric constant yields a single master curve for both conductivity and diffusion data. These data support the argument that mass and charge transport are thermally activated processes in the acetates, as previously observed in alcohol-based electrolytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...