Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 66(11)2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33853055

RESUMO

In this work we show the first microdosimetry measurements on a low energy proton beam with therapeutic-equivalent fluence rates by using the second generation of 3D-cylindrical microdetectors. The sensors belong to an improved version of a novel silicon-based 3D-microdetector design with electrodes etched inside silicon, which were manufactured at the National Microelectronics Centre (IMB-CNM, CSIC) in Spain. A new microtechnology has been employed using quasi-toroid electrodes of 25µm diameter and a depth of 20µm within the silicon bulk, resulting in a well-defined cylindrical radiation sensitive volume. These detectors were tested at the 18 MeV proton beamline of the cyclotron at the National Accelerator Centre (CNA, Spain). They were assembled into an in-house low-noise readout electronics to assess their performance at a therapeutic-equivalent fluence rate. Microdosimetry spectra of lineal energy were recorded at several proton energies starting from 18 MeV by adding 50µm thick tungsten foils gradually at the exit-window of the cyclotron external beamline, which corresponds to different depths along the Bragg curve. The experimentalyF¯values in silicon cover from (5.7 ± 0.9) to (8.5 ± 0.4) keV µm-1in the entrance to (27.4 ± 2.3) keV µm-1in the distal edge. Pulse height energy spectra were crosschecked with Monte Carlo simulations and an excellent agreement was obtained. This work demonstrates the capability of the second generation 3D-microdetectors to assess accurate microdosimetric distributions at fluence rates as high as those used in clinical centers in proton therapy.


Assuntos
Terapia com Prótons , Silício , Método de Monte Carlo , Prótons , Radiometria
2.
Phys Med Biol ; 65(17): 175004, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32885791

RESUMO

Microdosimetry has been traditionally performed through gaseous proportional counters, although in recent years different solid-state microdosimeters have been proposed and constructed for this task. In this paper, we analyze the response of solid-state devices of micrometric size with no intrinsic gain developed by CNM-CSIC (Spain). There are two major aspects of the operation of these devices that affect the reconstruction of the probability distributions and momenta of stochastic quantities related to microdosimetry. For micrometric volumes, the drift and diffusion of the charge carriers gives rise to a partial charge collection efficiency in the peripheral region of the depleted volume. This effect produces a perturbation of the reconstructed pulse height (i.e. imparted energy) distributions with respect to the actual microdosimetric distributions. The relevance of this deviation depends on the size, geometry and operating conditions of the device. On the other hand, the electronic noise from the single-event readout set-up poses a limit on the minimum detectable lineal energy when the microdosimeter size is reduced. This article addresses these issues to provide a framework on the physical constraints for the design and operation of solid-state microdosimeters.


Assuntos
Equipamentos e Provisões Elétricas , Radiometria/instrumentação , Probabilidade
3.
Phys Med Biol ; 61(11): 4036-47, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27163881

RESUMO

The commissioning of an ion beam for hadrontherapy requires the evaluation of the biologically weighted effective dose that results from the microdosimetric properties of the therapy beam. The spectra of the energy imparted at cellular and sub-cellular scales are fundamental to the determination of the biological effect of the beam. These magnitudes are related to the microdosimetric distributions of the ion beam at different points along the beam path. This work is dedicated to the measurement of microdosimetric spectra at several depths in the central axis of a (12)C beam with an energy of 94.98 AMeV using a novel 3D ultrathin silicon diode detector. Data is compared with Monte Carlo calculations providing an excellent agreement (deviations are less than 2% for the most probable lineal energy value) up to the Bragg peak. The results show the feasibility to determine with high precision the lineal energy transfer spectrum of a hadrontherapy beam with these silicon devices.


Assuntos
Radioterapia com Íons Pesados/instrumentação , Radiometria/instrumentação , Silício , Humanos , Transferência Linear de Energia , Método de Monte Carlo , Prótons
4.
Phys Med Biol ; 58(10): 3227-42, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23611848

RESUMO

The accurate detection and dosimetry of neutrons in mixed and pulsed radiation fields is a demanding instrumental issue with great interest both for the industrial and medical communities. In recent studies of neutron contamination around medical linacs, there is a growing concern about the secondary cancer risk for radiotherapy patients undergoing treatment in photon modalities at energies greater than 6 MV. In this work we present a promising alternative to standard detectors with an active method to measure neutrons around a medical linac using a novel ultra-thin silicon detector with 3D electrodes adapted for neutron detection. The active volume of this planar device is only 10 µm thick, allowing a high gamma rejection, which is necessary to discriminate the neutron signal in the radiotherapy peripheral radiation field with a high gamma background. Different tests have been performed in a clinical facility using a Siemens PRIMUS linac at 6 and 15 MV. The results show a good thermal neutron detection efficiency around 2% and a high gamma rejection factor.


Assuntos
Nêutrons/uso terapêutico , Radioterapia Assistida por Computador/métodos , Silício/química , Boro/química , Raios gama , Isótopos , Método de Monte Carlo , Radiometria , Radioterapia Assistida por Computador/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...