Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Biochem Zool ; 96(6): 405-417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38237194

RESUMO

AbstractHow do large and small reptiles defend against infections, given the consequences of body mass for physiology and disease transmission? Functionally equivalent mammalian and avian granulocytes increased disproportionately with body mass (i.e., scaled hypermetrically), such that large organisms had higher concentrations than expected by a prediction of proportional protection across sizes. However, as these scaling relationships were derived from endothermic animals, they do not necessarily inform the scaling of leukocyte concentration for ectothermic reptiles that have a different physiology and evolutionary history. Here, we asked whether and how lymphocyte and heterophil concentrations relate to body mass among more than 120 reptile species. We compared these relationships to those found in birds and mammals and to existing scaling frameworks (i.e., protecton, complexity, rate of metabolism, or safety factor hypotheses). Both lymphocyte and heterophil concentrations scaled almost isometrically among reptiles. In contrast, functionally equivalent granulocytes scaled hypermetrically and lymphocytes scaled isometrically in birds and mammals. Life history traits were also poor predictors of variation in reptilian heterophil and lymphocyte concentrations. Our results provide insight into differences in immune protection in birds and mammals relative to that in reptiles through a comparative lens. The shape of scaling relationships differs, which should be considered when modeling disease dynamics among these groups.


Assuntos
Evolução Biológica , Répteis , Animais , Répteis/fisiologia , Aves/fisiologia , Mamíferos/fisiologia , Leucócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...