Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 3824, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846873

RESUMO

The Nitrogen Use Efficiency (NUE) of grain cereals depends on nitrate (NO3-) uptake from the soil, translocation to the aerial parts, nitrogen (N) assimilation and remobilization to the grains. Brachypodium distachyon has been proposed as a model species to identify the molecular players and mechanisms that affects these processes, for the improvement of temperate C3 cereals. We report on the developmental, physiological and grain-characteristic responses of the Bd21-3 accession of Brachypodium to variations in NO3- availability. As previously described in wheat and barley, we show that vegetative growth, shoot/root ratio, tiller formation, spike development, tissue NO3- and N contents, grain number per plant, grain yield and grain N content are sensitive to pre- and/or post-anthesis NO3- supply. We subsequently described constitutive and NO3--inducible components of both High and Low Affinity Transport Systems (HATS and LATS) for root NO3- uptake, and BdNRT2/3 candidate genes potentially involved in the HATS. Taken together, our data validate Brachypodium Bd21-3 as a model to decipher cereal N nutrition. Apparent specificities such as high grain N content, strong post-anthesis NO3- uptake and efficient constitutive HATS, further identify Brachypodium as a direct source of knowledge for crop improvement.


Assuntos
Brachypodium/fisiologia , Nitrogênio/análise , Solo/química , Brachypodium/genética , Brachypodium/crescimento & desenvolvimento , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...