Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 13(5): 498-506, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17622221

RESUMO

Considerable attention has focused on regulation of central tryptophan hydroxylase (TPH) activity and protein expression. At the time of these earlier studies, it was thought that there was a single central TPH isoform. However, with the recent identification of TPH2, it becomes important to distinguish between regulatory effects on the protein expression and activity of the two isoforms. We have generated a TPH2-specific polyclonal antiserum (TPH2-6361) to study regulation of TPH2 at the protein level and to examine the distribution of TPH2 expression in rodent and human brain. TPH2 immunoreactivity (IR) was detected throughout the raphe nuclei, in lateral hypothalamic nuclei and in the pineal body of rodent and human brain. In addition, a prominent TPH2-IR fiber network was found in the human median eminence. We recently reported that glucocorticoid treatment of C57/Bl6 mice for 4 days markedly decreased TPH2 messenger RNA levels in the raphe nuclei, whereas TPH1 mRNA was unaffected. The glucocorticoid-elicited inhibition of TPH2 gene expression was blocked by co-administration of the glucocorticoid receptor antagonist mifepristone (RU-486). Using TPH2-6361, we have extended these findings to show a dose-dependent decrease in raphe TPH2 protein levels in response to 4 days of treatment with dexamethasone; this effect was blocked by co-administration of mifepristone. Moreover, the glucocorticoid-elicited inhibition of TPH2 was functionally significant: serotonin synthesis was significantly reduced in the frontal cortex of glucocorticoid-treated mice, an effect that was blocked by mifepristone co-administration. This study provides further evidence for the glucocorticoid regulation of serotonin biosynthesis via inhibition of TPH2 expression, and suggest that elevated glucocorticoid levels may be relevant to the etiology of psychiatric diseases, such as depression, where hypothalamic-pituitary-adrenal axis dysregulation has been documented.


Assuntos
5-Hidroxitriptofano/biossíntese , Dexametasona/análogos & derivados , Lobo Frontal/química , Proteínas do Tecido Nervoso/biossíntese , Núcleos da Rafe/enzimologia , Triptofano Hidroxilase/análise , Triptofano Hidroxilase/biossíntese , 5-Hidroxitriptofano/análise , Sequência de Aminoácidos , Animais , Especificidade de Anticorpos , Dexametasona/farmacologia , Indução Enzimática/efeitos dos fármacos , Feminino , Lobo Frontal/efeitos dos fármacos , Humanos , Soros Imunes , Camundongos , Camundongos Endogâmicos C57BL , Mifepristona/farmacologia , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Ovariectomia , Fragmentos de Peptídeos/imunologia , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , RNA Mensageiro/biossíntese , Núcleos da Rafe/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/imunologia
3.
Proc Natl Acad Sci U S A ; 85(6): 1937-41, 1988 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-2450352

RESUMO

Epidermal cell-derived factors (EDF), present in extracts and supernatant fluids of cultured epidermal cells, were found to stimulate the proliferation of keratinocytes but to inhibit fibroblasts. In vitro, the effect of EDF on epidermal cells resulted in an increased number of rapidly proliferating colonies composed mainly of basal keratinocytes. Control cultures grown in the absence of EDF had a high proportion of terminally differentiated cells. In fibroblast cultures EDF inhibited the ability of fibroblasts to cause contraction of collagen sponges by 90%. Epidermal growth factor, basic fibroblast growth factor, platelet-derived growth factor, transforming growth factor beta, nerve growth factor, and extracts of WI-38 cells (human embryonic lung fibroblasts) did not have this inhibitory activity. Application of EDF to surgical wounds stimulated extensive migration and proliferation of keratinocytes from remnants of glands, hair follicles, and wound edges. The restoration of complete epidermal coverage of wounds treated with EDF occurred twice as rapidly as that of control wounds. In addition, regenerating dermis in the EDF-treated wounds contained 1/5th to 1/15th as many cells as wounds treated with epidermal growth factor, urogastrone, transforming growth factor, or phosphate-buffered saline. The use of EDF to enhance re-epithelization and to prevent scar formation is proposed.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Pele/citologia , Cicatrização , Animais , Divisão Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Queratinas , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...