Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(27): eadl3921, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968362

RESUMO

Superconductivity often emerges as a dome around a quantum critical point (QCP) where long-range order is suppressed to zero temperature, mostly in magnetically ordered materials. However, the emergence of superconductivity at charge-order QCPs remains shrouded in mystery, despite its relevance to high-temperature superconductors and other exotic phases of matter. Here, we present resistance measurements proving that a dome of superconductivity surrounds the putative charge-density-wave QCP in pristine samples of titanium diselenide tuned with hydrostatic pressure. In addition, our quantum oscillation measurements combined with electronic structure calculations show that superconductivity sets in precisely when large electron and hole pockets suddenly appear through an abrupt change of the Fermi surface topology, also known as a Lifshitz transition. Combined with the known repulsive interaction, this suggests that unconventional s± superconductivity is mediated by charge-density-wave fluctuations in titanium diselenide. These results highlight the importance of the electronic ground state and charge fluctuations in enabling unconventional superconductivity.

2.
Phys Rev Lett ; 132(8): 086402, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38457726

RESUMO

The discovery of the Hat, an aperiodic monotile, has revealed novel mathematical aspects of aperiodic tilings. However, the physics of particles propagating in such a setting remains unexplored. In this work we study spectral and transport properties of a tight-binding model defined on the Hat. We find that (i) the spectral function displays striking similarities to that of graphene, including sixfold symmetry and Dirac-like features; (ii) unlike graphene, the monotile spectral function is chiral, differing for its two enantiomers; (iii) the spectrum has a macroscopic number of degenerate states at zero energy; (iv) when the magnetic flux per plaquette (ϕ) is half of the flux quantum, zero modes are found localized around the reflected "anti-hats"; and (v) its Hofstadter spectrum is periodic in ϕ, unlike for other quasicrystals. Our work serves as a basis to study wave and electron propagation in possible experimental realizations of the Hat, which we suggest.

3.
Science ; 378(6625): 1177, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36520900

RESUMO

Mysterious magnetic noise of elusive particles is finally understood.

4.
Nat Commun ; 12(1): 6037, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654799

RESUMO

In the presence of multiple bands, well-known electronic instabilities may acquire new complexity. While multiband superconductivity is the subject of extensive studies, the possibility of multiband charge density waves (CDWs) has been largely ignored so far. Here, combining energy dependent scanning tunnelling microscopy (STM) topography with a simple model of the charge modulations and a self-consistent calculation of the CDW gap, we find evidence for a multiband CDW in 2H-NbSe2. This CDW not only involves the opening of a gap on the inner band around the K-point, but also on the outer band. This leads to spatially out-of-phase charge modulations from electrons on these two bands, which we detect through a characteristic energy dependence of the CDW contrast in STM images.

5.
Phys Rev Lett ; 127(1): 015301, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34270282

RESUMO

The Hopf insulator is a weak topological insulator characterized by an insulating bulk with conducting edge states protected by an integer-valued linking number invariant. The state exists in three-dimensional two-band models. We demonstrate that the Hopf insulator can be naturally realized in lattices of dipolar-interacting spins, where spin exchange plays the role of particle hopping. The long-ranged, anisotropic nature of the dipole-dipole interactions allows for the precise detail required in the momentum-space structure, while different spin orientations ensure the necessary structure of the complex phases of the hoppings. Our model features robust gapless edge states at both smooth edges, as well as sharp edges obeying a certain crystalline symmetry, despite the breakdown of the two-band picture at the latter. In an accompanying paper [T. Schuster et al., Phys. Rev. A 103, AW11986 (2021)PLRAAN2469-9926] we provide a specific experimental blueprint for implementing our proposal using ultracold polar molecules of ^{40}K^{87}Rb.

6.
Nature ; 571(7764): 234-239, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31270461

RESUMO

Magnetic monopoles1-3 are hypothetical elementary particles with quantized magnetic charge. In principle, a magnetic monopole can be detected by the quantized jump in magnetic flux that it generates upon passage through a superconducting quantum interference device (SQUID)4. Following the theoretical prediction that emergent magnetic monopoles should exist in several lanthanide pyrochlore magnetic insulators5,6, including Dy2Ti2O7, the SQUID technique has been proposed for their direct detection6. However, this approach has been hindered by the high number density and the generation-recombination fluctuations expected of such thermally generated monopoles. Recently, theoretical advances have enabled the prediction of the spectral density of magnetic-flux noise from monopole generation-recombination fluctuations in these materials7,8. Here we report the development of a SQUID-based flux noise spectrometer and measurements of the frequency and temperature dependence of magnetic-flux noise generated by Dy2Ti2O7 crystals. We detect almost all of the features of magnetic-flux noise predicted for magnetic monopole plasmas7,8, including the existence of intense magnetization noise and its characteristic frequency and temperature dependence. Moreover, comparisons of simulated and measured correlation functions of the magnetic-flux noise indicate that the motions of magnetic charges are strongly correlated. Intriguingly, because the generation-recombination time constant for Dy2Ti2O7 is in the millisecond range, magnetic monopole flux noise amplified by SQUID is audible to humans.

7.
Proc Natl Acad Sci U S A ; 115(27): 6986-6990, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915084

RESUMO

A charge density wave (CDW) is one of the fundamental instabilities of the Fermi surface occurring in a wide range of quantum materials. In dimensions higher than one, where Fermi surface nesting can play only a limited role, the selection of the particular wavevector and geometry of an emerging CDW should in principle be susceptible to controllable manipulation. In this work, we implement a simple method for straining materials compatible with low-temperature scanning tunneling microscopy/spectroscopy (STM/S), and use it to strain-engineer CDWs in 2H-NbSe2 Our STM/S measurements, combined with theory, reveal how small strain-induced changes in the electronic band structure and phonon dispersion lead to dramatic changes in the CDW ordering wavevector and geometry. Our work unveils the microscopic mechanism of a CDW formation in this system, and can serve as a general tool compatible with a range of spectroscopic techniques to engineer electronic states in any material where local strain or lattice symmetry breaking plays a role.

8.
Science ; 358(6368): 1314-1317, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29217574

RESUMO

Bose condensation has shaped our understanding of macroscopic quantum phenomena, having been realized in superconductors, atomic gases, and liquid helium. Excitons are bosons that have been predicted to condense into either a superfluid or an insulating electronic crystal. Using the recently developed technique of momentum-resolved electron energy-loss spectroscopy (M-EELS), we studied electronic collective modes in the transition metal dichalcogenide semimetal 1T-TiSe2 Near the phase-transition temperature (190 kelvin), the energy of the electronic mode fell to zero at nonzero momentum, indicating dynamical slowing of plasma fluctuations and crystallization of the valence electrons into an exciton condensate. Our study provides compelling evidence for exciton condensation in a three-dimensional solid and establishes M-EELS as a versatile technique sensitive to valence band excitations in quantum materials.

9.
Sci Adv ; 3(5): e1602983, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28560340

RESUMO

By introducing a superconducting gap in Weyl or Dirac semimetals, the superconducting state inherits the nontrivial topology of their electronic structure. As a result, Weyl superconductors are expected to host exotic phenomena, such as nonzero-momentum pairing due to their chiral node structure, or zero-energy Majorana modes at the surface. These are of fundamental interest to improve our understanding of correlated topological systems, and, moreover, practical applications in phase-coherent devices and quantum applications have been proposed. Proximity-induced superconductivity promises to allow these experiments on nonsuperconducting Weyl semimetals. We show a new route to reliably fabricate superconducting microstructures from the nonsuperconducting Weyl semimetal NbAs under ion irradiation. The significant difference in the surface binding energy of Nb and As leads to a natural enrichment of Nb at the surface during ion milling, forming a superconducting surface layer (Tc ~ 3.5 K). Being formed from the target crystal itself, the ideal contact between the superconductor and the bulk may enable an effective gapping of the Weyl nodes in the bulk because of the proximity effect. Simple ion irradiation may thus serve as a powerful tool for the fabrication of topological quantum devices from monoarsenides, even on an industrial scale.

10.
Phys Rev Lett ; 115(23): 236401, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26684128

RESUMO

Artificial quasicrystals are nowadays routinely manufactured, yet only two naturally occurring examples are known. We present a class of systems with the potential to be realized both artificially and in nature, in which the lowest energy state is a one-dimensional quasicrystal. These systems are based on incommensurately charge-ordered materials, in which the quasicrystalline phase competes with the formation of a regular array of discommensurations as a way of interpolating between incommensurate charge order at high temperatures and commensurate order at low temperatures. The nonlocal correlations characteristic of the quasicrystalline state emerge from a free-energy contribution localized in reciprocal space. We present a theoretical phase diagram showing that the required material properties for the appearance of such a ground state allow for one-dimensional quasicrystals to form in real materials. The result is a potentially wide class of one-dimensional quasicrystals.

11.
Nat Commun ; 6: 7034, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25948390

RESUMO

Niobium diselenide has long served as a prototype of two-dimensional charge ordering, believed to arise from an instability of the electronic structure analogous to the one-dimensional Peierls mechanism. Despite this, various anomalous properties have recently been identified experimentally, which cannot be explained by Peierls-like weak-coupling theories. Here, we consider instead a model with strong electron-phonon coupling, taking into account both the full momentum and orbital dependence of the coupling matrix elements. We show that both are necessary for a consistent description of the full range of experimental observations. We argue that NbSe2 is typical in this sense, and that any charge-ordered material in more than one dimension will generically be shaped by the momentum and orbital dependence of its electron-phonon coupling as well as its electronic structure. The consequences will be observable in many charge-ordered materials, including cuprate superconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...