Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(52): 26909-26917, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31811021

RESUMO

Medicinal plants are a prolific source of natural products with remarkable chemical and biological properties, many of which have considerable remedial benefits. Numerous medicinal plants are suffering from wildcrafting, and thus biotechnological production processes of their natural products are urgently needed. The plant Aster tataricus is widely used in traditional Chinese medicine and contains unique active ingredients named astins. These are macrocyclic peptides showing promising antitumor activities and usually containing the highly unusual moiety 3,4-dichloroproline. The biosynthetic origins of astins are unknown despite being studied for decades. Here we show that astins are produced by the recently discovered fungal endophyte Cyanodermella asteris. We were able to produce astins in reasonable and reproducible amounts using axenic cultures of the endophyte. We identified the biosynthetic gene cluster responsible for astin biosynthesis in the genome of C. asteris and propose a production pathway that is based on a nonribosomal peptide synthetase. Striking differences in the production profiles of endophyte and host plant imply a symbiotic cross-species biosynthesis pathway for astin C derivatives, in which plant enzymes or plant signals are required to trigger the synthesis of plant-exclusive variants such as astin A. Our findings lay the foundation for the sustainable biotechnological production of astins independent from aster plants.

2.
J Biotechnol ; 257: 233-239, 2017 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-28647529

RESUMO

Fungal aromatic polyketides display a very diverse and widespread group of natural products. Due to their excellent light absorption properties and widely studied biological activities, they offer numerous application for food, textile and pharmaceutical industry. The biosynthetic pathways of fungal aromatic polyketides usually involve a set of successive enzymes, in which a non-reductive polyketide synthase iteratively catalyzes the essential assembly of simple building blocks into (often polycyclic) aromatic compounds. However, only a limited number of such pathways have been described so far and further elucidation of the individual biosynthetic steps is needed to fully exploit the biotechnological and medicinal potential of these compounds. Here, we identified the bisanthraquinone skyrin as the main pigment of the fungus Cyanodermella asteris, an endophyte that has recently been isolated from the traditional Chinese medicinal plant Aster tataricus. The genome of C. asteris was sequenced, assembled and annotated, which enables first insights into a genome from a non-lichenized member of the class Lecanoromycetes. Genetic and in silico analyses led to the identification of a gene cluster of five genes suggested to encode the enzymatic pathway for skyrin. Our study is a starting point for rational pathway engineering in order to drive the production towards higher yields or more active derivatives. Moreover, our investigations revealed a large potential of secondary metabolite production in C. asteris as well as in all Lecanoromycetes of which genomes were available. These findings convincingly emphasize that Lecanoromycetes are prolific producers of secondary metabolites.


Assuntos
Antraquinonas/metabolismo , Antineoplásicos/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Vias Biossintéticas/genética , Endófitos , Policetídeos/metabolismo , Ascomicetos/enzimologia , Sequência de Bases , DNA Fúngico/genética , Emodina/metabolismo , Genes Fúngicos , Genoma Fúngico/genética , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Família Multigênica , Pigmentos Biológicos/metabolismo , Plantas Medicinais/microbiologia , Policetídeo Sintases/genética , Metabolismo Secundário/genética
3.
Environ Microbiol ; 18(11): 3728-3741, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26954535

RESUMO

Talaromyces islandicus ('Penicillium islandicum') is a widespread foodborne mold that produces numerous secondary metabolites, among them potent mycotoxins belonging to different chemical classes. A notable metabolite is the hepatotoxic and carcinogenic pentapeptide cyclochlorotine that contains the unusual amino acids ß-phenylalanine, 2-aminobutyrate and 3,4-dichloroproline. Although the chemical structure has been known for over five decades, nothing is known about the biosynthetic pathway of cyclochlorotine. Bioinformatic analysis of the recently sequenced genome of T. islandicus identified a wealth of gene clusters potentially coding for the synthesis of secondary metabolites. Here, we show by RNA interference-mediated gene silencing that a nonribosomal peptide synthetase, CctN, is responsible for the synthesis of cyclochlorotine. Moreover, we identified novel cyclochlorotine chemical variants, whose production also depended on cctN expression. Surprisingly, the halogenase required for cyclochlorotine biosynthesis is not encoded in the cct cluster. Nonetheless, our findings enabled us to propose a detailed model for cyclochlorotine biosynthesis. In addition, comparative genomics revealed that cct-like clusters are present in all of the sequenced Talaromyces strains indicating a high prevalence of cyclochlorotine production ability.


Assuntos
Proteínas Fúngicas/metabolismo , Micotoxinas/biossíntese , Peptídeo Sintases/metabolismo , Peptídeos Cíclicos/biossíntese , Talaromyces/metabolismo , Proteínas Fúngicas/genética , Penicillium/metabolismo , Peptídeo Sintases/genética , Fenilalanina/metabolismo , Talaromyces/enzimologia , Talaromyces/genética
4.
J Biotechnol ; 211: 101-2, 2015 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-26197417

RESUMO

Talaromyces (Penicillium) islandicus is a common mold found in stored rice or cereals. It has a highly versatile metabolism characterized by the secretion of numerous biopolymer degrading enzymes, mycotoxins, and anthraquinones that altogether offer a broad range of potential industrial applications. Here, we report the draft genome sequence of Talaromyces islandicus, which provides the basis of a biotechnological usage of this species.


Assuntos
Biotecnologia/métodos , Genoma Fúngico , Talaromyces/genética , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala
5.
FEMS Microbiol Lett ; 343(2): 177-82, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23551226

RESUMO

Vibrio coralliilyticus ATCC BAA-450 is a pathogen causing coral bleaching at elevated seawater temperatures. Based on the available genome sequence, the strain has a type III secretion system. Within the corresponding gene cluster, VIC_001052 is encoded, which contains a conserved domain of unknown function DUF1521. In this study, we show that the purified domain exhibits autocleavage activity in the presence of several divalent metal ions, for example, calcium and manganese but not with magnesium or zinc. Autocleavage is not affected by temperatures between 0 and 30 °C, indicating that seawater temperature is not a critical factor for this activity. The DUF1521 domain and the cleavage site are conserved in several proteins from proteobacteria, suggesting a similar cleavage activity for these proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Íons/metabolismo , Domínios e Motivos de Interação entre Proteínas , Vibrio/genética , Vibrio/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sequência Conservada , Expressão Gênica , Família Multigênica , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...