Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38133046

RESUMO

The investigation into intercalation mechanisms in vanadium pentoxide has garnered significant attention within the realm of research, primarily propelled by its remarkable theoretical capacity for energy storage. This comprehensive review delves into the latest advancements that have enriched our understanding of these intricate mechanisms. Notwithstanding its exceptional storage capacity, the compound grapples with challenges arising from inherent structural instability. Researchers are actively exploring avenues for improving electrodes, with a focus on innovative structures and the meticulous fine-tuning of particle properties. Within the scope of this review, we engage in a detailed discussion on the mechanistic intricacies involved in ion intercalation within the framework of vanadium pentoxide. Additionally, we explore recent breakthroughs in understanding its intercalation properties, aiming to refine the material's structure and morphology. These refinements are anticipated to pave the way for significantly enhanced performance in various energy storage applications.

2.
Nanomaterials (Basel) ; 13(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37368280

RESUMO

LiFePO4 is a common electrode cathode material that still needs some improvements regarding its electronic conductivity and the synthesis process in order to be easily scalable. In this work, a simple, multiple-pass deposition technique was utilized in which the spray-gun was moved across the substrate creating a "wet film", in which-after thermal annealing at very mild temperatures (i.e., 65 °C)-a LiFePO4 cathode was formed on graphite. The growth of the LiFePO4 layer was confirmed via X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy. The layer was thick, consisting of agglomerated non-uniform flake-like particles with an average diameter of 1.5 to 3 µm. The cathode was tested in different LiOH concentrations of 0.5 M, 1 M, and 2 M, indicating an quasi-rectangular and nearly symmetric shape ascribed to non-faradaic charging processes, with the highest ion transfer for 2 M LiOH (i.e., 6.2 × 10-9 cm2/cm). Nevertheless, the 1 M aqueous LiOH electrolyte presented both satisfactory ion storage and stability. In particular, the diffusion coefficient was estimated to be 5.46 × 10-9 cm2/s, with 12 mAh/g and a 99% capacity retention rate after 100 cycles.

3.
Nanomaterials (Basel) ; 12(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35564145

RESUMO

The necessity for large scale and sustainable energy storage systems is increasing. Lithium-ion batteries have been extensively utilized over the past decades for a range of applications including electronic devices and electric vehicles due to their distinguishing characteristics. Nevertheless, their massive deployment can be questionable due to use of critical materials as well as limited lithium resources and growing costs of extraction. One of the emerging alternative candidates is potassium-ion battery technology due to potassium's extensive reserves along with its physical and chemical properties similar to lithium. The challenge to develop anode materials with good rate capability, stability and high safety yet remains. Iron oxides are potentially promising anodes for both battery systems due to their high theoretical capacity, low cost and abundant reserves, which aligns with the targets of large-scale application and limited environmental footprint. However, they present relevant limitations such as low electronic conductivity, significant volume changes and inadequate energy efficiency. In this review, we discuss some recent design strategies of iron oxide-based materials for both electrochemical systems and highlight the relationships of their structure performance in nanostructured anodes. Finally, we outline challenges and opportunities for these materials for possible development of KIBs as a complementary technology to LIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...