Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Insects ; 15(7)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-39057201

RESUMO

Bacterial symbionts in insects constitute a key factor for the survival of the host due to the benefits they provide. Parasitoid wasps are closely associated with viruses, bacteria, and fungi. However, the primary symbionts and their functions are not yet known. This study was undertaken to determine the gut microbiota of six species of the Telenomus genus: T. alecto (Crawford), T. sulculus Johnson, T. fariai Costa Lima, T. remus Nixon, T. podisi Ashmead, and T. lobatus Johnson & Bin. Wasp parasitoids were collected from their hosts in different locations in Mexico. DNA was extracted from gut collection, and sequencing of bacterial 16S rRNA was carried out in Illumina® MiSeq™. Among the six species of wasps, results showed that the most abundant phylum were Proteobacteria (82.3%), Actinobacteria (8.1%), and Firmicutes (7.8%). The most important genera were Delftia and Enterobacter. Seventeen bacteria species were found to be shared among the six species of wasps. The associate microbiota will help to understand the physiology of Telenomus to promote the use of these wasp parasitoids in the management of insect pests and as potential biomarkers to target new strategies to control pests.

2.
Insects ; 15(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38392539

RESUMO

Organic synthetic insecticides continue to be part of the arsenal for combating vector-borne diseases in Mexico. Larvicides are a fundamental part of the process in programs for mosquito control, temephos being one of the most widely used in Mexico. In the present study, we analyzed the frequency of temephos resistance in twenty-three Aedes aegypti populations using the discriminating concentration (DC) of 0.012 mg/L. We also tested 5× DC (0.6 mg/L) and 10× DC (0.12 mg/L) of temephos. The resistance distribution to temephos was interpolated to unsampled sites using the inverse distance weighting (IDW) method. The populations of Ae. aegypti showed a high frequency of resistance (1× DC) with mortality rates below 93% in 22 of the 23 populations analyzed. Moderate resistance intensity (5× DC) was found in 78% of the populations, and high intensity (10× DC) in 30%. Predicted mortality was below 60% in the populations of the Pacific Coast, along the Gulf of Mexico, and in the state of Coahuila in Northeastern Mexico in relation to 1× DC; the Pacific Coast and Northeast patterns hold for 5× and 10× DC. The results suggest the need for rotation of the larvicide to effectively control the larval populations of the vector in the country.

3.
Biomedica ; 43(2): 296-304, 2023 06 30.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-37433166

RESUMO

Introduction. Dengue is a public health problem in La Guajira region. Control has focused on the vector using insecticides, including organophosphates. Objective. To evaluate the state of susceptibility to organophosphates insecticides in fifteen Aedes aegypti (L.) populations in La Guajira, Colombia. Materials and methods. We collected samples of third-instar larvae and adult mosquitoes of Ae. aegypti in the municipalities of Albania, Barrancas, Dibulla, Distracción, El Molino, Fonseca, Hatonuevo, La Jagua del Pilar, Maicao, Manaure, Riohacha, San Juan del Cesar, Uribia, Urumita, Villanueva. Bioassays for temefos, malathion, and pirimiphos-methyl were carried out following the methodology of the World Health Organization, and the bottle technique using the guidance of the Centers for Disease Control and Prevention. Susceptibility to temefos was determined through the resistance ratio between lethal concentration 50 and lethal concentration 95; for the compounds temefos, malathion and pirimiphos-methyl, susceptibility was calculated using diagnostic dose and diagnostic time in the populations evaluated. Rockefeller susceptible strain was used as a control. Results: All evaluated populations of Ae. aegypti from La Guajira were found to be susceptible to temefos (ratio resistance to CL50<5.0; ratio resistance to CL95<5.0; 98 - 100 % mortality); pirimiphosmethyl (99 - 100 % mortality), and malathion (100 % mortality). Conclusion. Based on the results, the use of temefos, malathion, and pirimiphosmethyl is feasible for the control of Ae. aegypti in the evaluated populations.


Introducción. El dengue es un problema de salud pública para el departamento de La Guajira. El control se ha enfocado en el vector con el uso de insecticidas, entre ellos los organofosforados. Objetivo. Evaluar el estado de la sensibilidad a insecticidas organofosforados de quince poblaciones de Aedes aegypti (L.) en el departamento de La Guajira, Colombia. Materiales y métodos. Se realizaron bioensayos para temefos, malatión y metil-pirimifos en larvas de tercer estadio y mosquitos adultos de Ae. aegypti en los municipios de Albania, Barrancas, Dibulla, Distracción, El Molino, Fonseca, Hatonuevo, La Jagua del Pilar, Maicao, Manaure, Riohacha, San Juan del Cesar, Uribia, Urumita y Villanueva, siguiendo la metodología de la Organización Mundial de la Salud (OMS) y la técnica de botellas usando la guía de los de los Centers for Disease Control and Prevention, respectivamente. Se determinó la sensibilidad por medio de la razón de resistencia a CL50 y CL95 (RRCL50, RRCL95) para temefos y a dosis y tiempo diagnóstico para temefos, malatión y metilpirimifos en las poblaciones de campo evaluadas, usando como control la cepa sensible Rockefeller. Resultados. Las 15 poblaciones del departamento de La Guajira son sensibles a: temefos (razón de la resistencia a RRCL50<5,0; relación de resistencia a CL95<5,0; 98 a 100 % de mortalidad); metil-pirimifos (99 a 100 % de mortalidad) y malatión (100 % de mortalidad). Conclusión. Con base en los resultados obtenidos, es factible el uso de temefos, malatión y metil-pirimifos para el control de Ae. aegypti en las poblaciones evaluadas.


Assuntos
Aedes , Estados Unidos , Animais , Organofosfatos , Colômbia , Temefós , Mosquitos Vetores
4.
J Am Mosq Control Assoc ; 39(2): 122-128, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37364181

RESUMO

Rhipicephalus microplus is the most important tick in veterinary medicine, given its repercussions on animal production. The principal strategy to avoid adverse effects associated with R. microplus is the chemical control of tick populations through organosynthetic acaricides. Therefore, monitoring susceptibility to acaricides is paramount in any control program. This study aimed to analyze the resistance status of 2 populations of R. microplus from northeastern Mexico to the organochlorine (OC) lindane, organophosphates (OP) coumaphos, chlorfenvinphos, diazinon, and chlorpyrifos, and the synthetic pyrethroids (SPs) flumethrin, deltamethrin, and cypermethrin. Discriminating doses (DD) of each acaricide were used in the larval packet bioassay (LPT). Additionally, the presence of the knockdown resistance (kdr) mutation T2134A associated with pyrethroid resistance was evaluated using allele-specific polymerase chain reaction (PCR). The populations of R. microplus showed a high frequency of resistance to SP, with mortality rates of less than 5%; they also showed resistance to the OPs (diazinon and chlorpyrifos) with mortality rates ranging from 1.29% to 34.62%; meanwhile, they were susceptible to coumaphos and chlorfenvinphos. Mortality rates higher than 66% were observed for lindane, indicating susceptibility. The mutant allele of the kdr mutation T2134A was detected in 75% and 100% of the pools analyzed. The populations studied presented a highly resistant profile to pyrethroids, with the presence of the kdr mutant allele A2134. The susceptibility to the organophosphates such as coumaphos and chlorfenvinphos of R. microplus from northeastern Mexico should be noted.


Assuntos
Acaricidas , Clorfenvinfos , Clorpirifos , Ixodidae , Piretrinas , Rhipicephalus , Animais , Acaricidas/farmacologia , Rhipicephalus/genética , Clorfenvinfos/farmacologia , Diazinon/farmacologia , Hexaclorocicloexano/farmacologia , Cumafos/farmacologia , Clorpirifos/farmacologia , México , Resistência a Inseticidas/genética , Piretrinas/farmacologia , Mutação
5.
Parasit Vectors ; 16(1): 21, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670470

RESUMO

BACKGROUND: The continued spread of insecticide resistance in mosquito vectors of malaria and arboviral diseases may lead to operational failure of insecticide-based interventions if resistance is not monitored and managed efficiently. This study aimed to develop and validate a new WHO glass bottle bioassay method as an alternative to the WHO standard insecticide tube test to monitor mosquito susceptibility to new public health insecticides with particular modes of action, physical properties or both. METHODS: A multi-centre study involving 21 laboratories worldwide generated data on the susceptibility of seven mosquito species (Aedes aegypti, Aedes albopictus, Anopheles gambiae sensu stricto [An. gambiae s.s.], Anopheles funestus, Anopheles stephensi, Anopheles minimus and Anopheles albimanus) to seven public health insecticides in five classes, including pyrethroids (metofluthrin, prallethrin and transfluthrin), neonicotinoids (clothianidin), pyrroles (chlorfenapyr), juvenile hormone mimics (pyriproxyfen) and butenolides (flupyradifurone), in glass bottle assays. The data were analysed using a Bayesian binomial model to determine the concentration-response curves for each insecticide-species combination and to assess the within-bioassay variability in the susceptibility endpoints, namely the concentration that kills 50% and 99% of the test population (LC50 and LC99, respectively) and the concentration that inhibits oviposition of the test population by 50% and 99% (OI50 and OI99), to measure mortality and the sterilizing effect, respectively. RESULTS: Overall, about 200,000 mosquitoes were tested with the new bottle bioassay, and LC50/LC99 or OI50/OI99 values were determined for all insecticides. Variation was seen between laboratories in estimates for some mosquito species-insecticide combinations, while other test results were consistent. The variation was generally greater with transfluthrin and flupyradifurone than with the other compounds tested, especially against Anopheles species. Overall, the mean within-bioassay variability in mortality and oviposition inhibition were < 10% for most mosquito species-insecticide combinations. CONCLUSION: Our findings, based on the largest susceptibility dataset ever produced on mosquitoes, showed that the new WHO bottle bioassay is adequate for evaluating mosquito susceptibility to new and promising public health insecticides currently deployed for vector control. The datasets presented in this study have been used recently by the WHO to establish 17 new insecticide discriminating concentrations (DCs) for either Aedes spp. or Anopheles spp. The bottle bioassay and DCs can now be widely used to monitor baseline insecticide susceptibility of wild populations of vectors of malaria and Aedes-borne diseases worldwide.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Feminino , Inseticidas/farmacologia , Mosquitos Vetores , Saúde Pública , Teorema de Bayes , Controle de Mosquitos/métodos , Piretrinas/farmacologia , Resistência a Inseticidas , Bioensaio , Organização Mundial da Saúde
6.
J Am Mosq Control Assoc ; 38(3): 226-229, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35839258

RESUMO

Susceptibility to organophosphates was evaluated in 2 populations of Culex quinquefasciatus from the department of Atlantico, Colombia. Bioassays for temephos, malathion, and pirimiphos-methyl were performed with 3rd-stage larvae and adult females of Cx. quinquefasciatus from the municipalities of Soledad and Puerto Colombia, following the methods of the World Health Organization and Centers for Disease Control and Prevention, respectively. The median lethal concentration (LC50) and 90% lethal concentration (LC90) resistance ratios (RRLC50 and RRLC90) were determined for each insecticide in the field populations evaluated, using the Cartagena strain as the susceptible control. Relative to LC50 and LC90 of the Cartagena strain, the population from Puerto Colombia was moderately resistant to temephos (RRLC50 5.7-fold) and malathion (RRLC50 8.6-fold, RRLC90 9-fold) and susceptible to pirimiphos-methyl (RRLC50 and RRLC90 < 5-fold). The population from Soledad was susceptible to temephos and pirimiphos-methyl (RRLC50 and RRLC90 < 5-fold) and showed moderate resistance to malathion (RRLC50 7.5-fold). It is important to emphasize that routine monitoring of insecticide resistance in Cx. quinquefasciatus helps us detect resistance early and improve the effectiveness of control strategies.


Assuntos
Culex , Inseticidas , Animais , Colômbia , Feminino , Resistência a Inseticidas , Inseticidas/farmacologia , Larva , Malation , Organofosfatos , Temefós
7.
Insects ; 13(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35447819

RESUMO

The primary strategy to avoid adverse impacts from insect-mediated pathogen transmission is the chemical control of vector populations through insecticides; its continued use has led to insecticide resistance and unknown consequences on vector competence. This review aims to systematically analyze and synthesize the research on the influence of insecticide resistance (IR) on vector competence (VC). Thirty studies met the inclusion criteria. Twenty studies, conducted either in laboratory or field settings, described the influence of phenotypic insecticide resistance and mechanisms on VC in vectors of human pathogens. Seven studies showed the effect of exposure to insecticides on VC in vectors of human pathogens. Three studies reported the influence of phenotypic resistance and mechanisms on VC in crop pests. The evidence shows that IR could enhance, impair, or have no direct effect on VC in either field or laboratory-designed studies. Similar positive and negative trends are found in pest vectors in crops and studies of insecticide exposure and VC. Even though there is evidence that exposure to insecticides and IR can enhance VC, thus increasing the risk of pathogen transmission, more investigations are needed to confirm the observed patterns and what implications these factors could have in vector control programs.

8.
J Med Entomol ; 59(3): 930-939, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35389486

RESUMO

In Mexico, Aedes aegypti (L.) is the primary dengue vector, chikungunya, and Zika viruses. The continued use of synthetic pyrethroids has led to the development of resistance in target populations, which has diminished the effectiveness of vector control programs. Resistance has been associated with disadvantages that affect the biological parameters of resistant mosquitoes compared to susceptible ones. In the present study, the disadvantages were evaluated by parameters related to survival and reproduction ('fitness cost') after selection with deltamethrin for five generations. The parameters analyzed were the length of the development cycle, sex ratio, survival, longevity, fecundity, egg viability, preoviposition, oviposition and postoviposition periods, and growth parameters. In the deltamethrin-selected strain, there was a decrease in the development cycle duration, the percentage of pupae, the oviposition period, and eggs viability. Although mean daily fecundity was not affected after the selection process, this, together with the decrease in the survival and fecundity levels by specific age, significantly affected the gross reproductive rate (GRR), net reproductive rate (Ro), and intrinsic growth rate (rm) of the group selected for five generations with deltamethrin compared to the group without selection. Identifying the 'cost' of resistance in biological fitness represents an advantage if it is desired to limit the spread of resistant populations since the fitness cost is the less likely that resistant individuals will spread in the population. This represents an important factor to consider in designing integrated vector management programs.


Assuntos
Aedes , Inseticidas , Piretrinas , Infecção por Zika virus , Zika virus , Animais , Feminino , Resistência a Inseticidas , Inseticidas/farmacologia , Mosquitos Vetores/genética , Nitrilas , Piretrinas/farmacologia
9.
Insects ; 14(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36661959

RESUMO

Dengue, chikungunya, and Zika are of great concern to the public health of Colombia. One of the main control strategies for these diseases is the application of insecticides directed at the Aedes aegypti vector. However, insecticide resistance has been increasingly recorded in the country, making control measures difficult. Here, we evaluated the resistance profiles for pyrethroids in populations of Ae. aegypti from La Guajira, Colombia. The frequency (diagnostic dose, DD) and intensity (2×, 5×, and 10× DD) of resistance to permethrin, deltamethrin, and lambda-cyhalothrin were determined in 15 populations of Ae. aegypti from La Guajira, Colombia, using the bottle bioassay. The kdr mutations V1016I, F1534C, and V410L, were identified, and their allele and genotype frequencies were calculated. Finally, the mortality values for the analyzed pyrethroids were interpolated following the IDW method for predicting pyrethroid resistance. The populations of Ae. aegypti showed a high frequency of resistance to permethrin with a low to moderate intensity, which was associated with the triple-resistant haplotype LL410/II1016/CC1534. They remain susceptible to deltamethrin and, in some populations, expressed the risk of developing resistance to lambda-cyhalothrin.

10.
PLoS Negl Trop Dis ; 15(1): e0009005, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465098

RESUMO

BACKGROUND: The integration of house-screening and long-lasting insecticidal nets, known as insecticide-treated screening (ITS), can provide simple, safe, and low-tech Aedes aegypti control. Cluster randomised controlled trials in two endemic localities for Ae. aegypti of south Mexico, showed that ITS conferred both, immediate and sustained (~2 yr) impact on indoor-female Ae. aegypti infestations. Such encouraging results require further validation with studies quantifying more epidemiologically-related endpoints, including arbovirus infection in Ae. aegypti. We evaluated the efficacy of protecting houses with ITS on Ae. aegypti infestation and arbovirus infection during a Zika outbreak in Merida, Yucatan, Mexico. METHODOLOGY/PRINCIPAL FINDINGS: A two-arm cluster-randomised controlled trial evaluated the entomological efficacy of ITS compared to the absence of ITS (with both arms able to receive routine arbovirus vector control) in the neighbourhood Juan Pablo II of Merida. Cross-sectional entomological surveys quantified indoor adult mosquito infestation and arbovirus infection at baseline (pre-ITS installation) and throughout two post-intervention (PI) surveys spaced at 6-month intervals corresponding to dry/rainy seasons over one year (2016-2017). Household-surveys assessed the social reception of the intervention. Houses with ITS were 79-85% less infested with Aedes females than control houses up to one-year PI. A similar significant trend was observed for blood-fed Ae. aegypti females (76-82%). Houses with ITS had significantly less infected female Ae. aegypti than controls during the peak of the epidemic (OR = 0.15, 95%CI: 0.08-0.29), an effect that was significant up to a year PI (OR = 0.24, 0.15-0.39). Communities strongly accepted the intervention, due to its perceived mode of action, the prevalent risk for Aedes-borne diseases in the area, and the positive feedback from neighbours receiving ITS. CONCLUSIONS/SIGNIFICANCE: We show evidence of the protective efficacy of ITS against an arboviral disease of major relevance, and discuss the relevance of our findings for intervention adoption.


Assuntos
Aedes/virologia , Controle de Mosquitos/métodos , Mosquiteiros/estatística & dados numéricos , Infecção por Zika virus/prevenção & controle , Animais , Vírus Chikungunya/isolamento & purificação , Vírus da Dengue , Feminino , Habitação , Humanos , Mordeduras e Picadas de Insetos/prevenção & controle , Inseticidas , México , Mosquitos Vetores , Zika virus/isolamento & purificação , Infecção por Zika virus/epidemiologia
11.
J Med Entomol ; 57(6): 1830-1834, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32516378

RESUMO

The use of insecticides for the control of Aedes aegypti (L.) (Diptera: Culicidae) in Colombia has indirectly influenced the susceptibility status of Culex quinquefasciatus Say populations. We evaluated pyrethroid susceptibility in two populations of Cx. quinquefasciatus in the Atlantico Department of Colombia and its possible resistance mechanism (kdr mutation). Bottle bioassays were performed for permethrin, deltamethrin, and λ-cyhalothrin in female mosquitoes of Cx. quinquefasciatus. The resistance ratios (RRs) for KC50 and LC50 for each insecticide in the field populations examined were determined, using the Cartagena strain as the susceptible control. The L1014F kdr mutation was identified in the para gene of the voltage-gated sodium channel (vgsc), along with its allelic and genotypic frequency. Low knockdown resistance (RRKC50) to deltamethrin was found in Puerto Colombia and Soledad populations as well as low resistance to λ-cyalothrin in this latter population. Moderate knockdown resistance to permethrin was found in both populations. At 24 h post-exposure on the other hand, there was low resistance (RRLC50) to permethrin in Puerto Colombia and moderate resistance in Soledad. Moderate resistance to deltamethrin was found in Puerto Colombia and low resistance in Soledad. Low resistance to λ-cyhalothrin was seen in Puerto Colombia and moderate resistance in Soledad. Variability was found in the susceptibility to the pyrethroids in the populations of Cx. quinquefasciatus evaluated, and the L1014F kdr mutation is reported for the first time as a possible pyrethroid resistance mechanism in this species in Colombia.


Assuntos
Culex/efeitos dos fármacos , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mutação , Piretrinas/farmacologia , Animais , Colômbia , Culex/genética , Feminino , Proteínas de Insetos/metabolismo , Controle de Mosquitos
12.
Parasit Vectors ; 13(1): 325, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32586378

RESUMO

BACKGROUND: Knockdown resistance (kdr) is the main mechanism that confers resistance to pyrethroids and DDT. This is a product of non-synonymous mutations in the voltage-gated sodium channel (vgsc) gene, and these mutations produce a change of a single amino acid which reduces the affinity of the target site for the insecticide molecule. In Mexico, V410L, V1016I and F1534C mutations are common in pyrethroid-resistant Aedes aegypti (L.) populations. METHODS: A multiplex PCR was developed to detect the V410L, V1016I and F1534C mutations in Ae. aegypti. The validation of the technique was carried out by DNA sequencing using field populations previously characterized for the three mutations through allele-specific PCR (AS-PCR) and with different levels of genotypic frequencies. RESULTS: The standardized protocol for multiplex end-point PCR was highly effective in detecting 15 genotypes considering the three mutations V410L, V1106I and F1534C, in 12 field populations of Ae. aegypti from Mexico. A complete concordance with AS-PCR and DNA sequencing was found for the simultaneous detection of the three kdr mutations. CONCLUSIONS: Our diagnostic method is highly effective for the simultaneous detection of V410L, V1016I and F1534C, when they co-occur. This technique represents a viable alternative to complement and strengthen current monitoring and resistance management strategies against Ae. aegypti.


Assuntos
Aedes/genética , Resistência a Inseticidas/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Canais de Sódio Disparados por Voltagem/genética , Animais , Genes de Insetos , Técnicas de Genotipagem/métodos , Proteínas de Insetos/genética , Mosquitos Vetores/genética , Mutação , Piretrinas
13.
Parasit Vectors ; 13(1): 224, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375862

RESUMO

BACKGROUND: Insecticide resistance is a serious problem for vector control programmes worldwide. Resistance is commonly attributed to mutations at the insecticide's target site or increased activity of detoxification enzymes. METHODS: We determined the knockdown concentration (KC50) and lethal concentration (LC50) of deltamethrin in six natural populations of adult Aedes aegypti from southeastern Mexico. These populations were then selected over five generations using the LC50 from the preceding generation that underwent selection, and the heritability of deltamethrin resistance was quantified. For each generation, we also determined the frequency of the kdr alleles L410, I1016 and C1534, and the levels of activity of three enzyme families (α- and ß-esterases, mixed-function oxidases and glutathione S-transferases (GST)) associated with insecticide detoxification. RESULTS: There was an increase in KC50 and LC50 values in the subsequent generations of selection with deltamethrin (FS5vs FS0). According to the resistance ratios (RRs), we detected increases in LC50 ranging from 1.5 to 5.6 times the values of the parental generation and in KC50 ranging from 1.3-3.8 times the values of the parental generation. Triple homozygous mutant individuals (tri-locus, LL/II/CC) were present in the parental generations and increased in frequency after selection. The frequency of L410 increased from 1.18-fold to 2.63-fold after selection with deltamethrin (FS5vs FS0) in the populations analyzed; for I1016 an increase between 1.19-fold to 2.79-fold was observed, and C1534 was fixed in all populations after deltamethrin selection. Enzymatic activity varied significantly over the generations of selection. However, only α- esterase activity remained elevated in multiple populations after five generations of deltamethrin selection. We observed an increase in the mean activity levels of GSTs in two of the six populations analyzed. CONCLUSIONS: The high levels of resistance and their association with high frequencies of kdr mutations (V410L, V1016I and F1534C) obtained through artificial selection, suggest an important role of these mutations in conferring resistance to deltamethrin. We highlight the need to implement strategies that involve the monitoring of kdr frequencies in insecticide resistance monitoring and management programmes.


Assuntos
Resistência a Inseticidas/genética , Nitrilas/farmacologia , Piretrinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Aedes/efeitos dos fármacos , Aedes/genética , Aedes/metabolismo , Animais , Esterases/efeitos dos fármacos , Esterases/metabolismo , Genes de Insetos , Glutationa Transferase/efeitos dos fármacos , Glutationa Transferase/metabolismo , Controle de Insetos , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Mosquitos Vetores/metabolismo , Mutação , Oxirredutases/efeitos dos fármacos , Oxirredutases/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/efeitos dos fármacos
14.
J Med Entomol ; 57(1): 218-223, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31504686

RESUMO

Aedes aegypti (L.) is the primary vector of the viruses that cause dengue, Zika, and chikungunya, for which effective vaccines and drugs are still lacking. Current strategies for suppressing arbovirus outbreaks based on insecticide use pose a challenge because of the rapid increase in resistance. The widespread and excessive use of pyrethroid-based insecticides has created a large selection pressure for a kdr-type resistance, caused by mutations in the para gene of the voltage-gated sodium channel (vgsc). Our objective was to evaluate the allelic frequency of natural populations of Ae. aegypti of Mexico at codon 410 of the para gene. Twenty-six Ae. aegypti populations from east and southern Mexico were genotyped for the codon 410 using allele-specific PCR. The frequencies of the L410 allele in Ae. aegypti ranged from 0.10 to 0.99; however, most of the frequencies were in the range of 0.36 to 0.64. The highest frequencies were found in three populations from the state of Veracruz, namely, Minatitlan with 0.99, Poza Rica with 0.82, and Jose Cardel with 0.97, along with populations from Cancun in Quintana Roo with 0.93, Frontera in Tabasco with 0.91, and Ciudad del Carmen in Campeche with 0.86. The frequency of the L410 allele was high in all populations of Ae. aegypti with higher values in populations of the southeast of the country. The knowledge of specific substitutions in vgsc and their interaction to confer resistance is essential to predict and develop future strategies for resistance management in Ae. aegypti in Mexico.


Assuntos
Aedes/genética , Frequência do Gene , Proteínas de Insetos/genética , Mutação , Canais de Sódio/genética , Aedes/efeitos dos fármacos , Alelos , Animais , Proteínas de Insetos/metabolismo , México , Canais de Sódio/metabolismo
16.
Insect Sci ; 26(5): 809-820, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29611294

RESUMO

Although having five different ways of transmission the vector-borne is the principal way of transmission of Chagas disease, which involves insects of the subfamily Triatominae (Hemiptera: Reduviidae). Nineteen of the 31 species that occur in Mexico are associated with humans, and all are capable of transmitting the disease. Pyrethroids are the insecticides recommended for the control of these vectors in Mexico. We determined the susceptibility to the pyrethroids deltamethrin and permethrin of peridomestic populations of Triatoma mazzottii Usinger and two populations of Triatoma longipennis Usinger in comparison with a reference strain for each species. Bioassays were performed for the determination of the LD50 for both field populations and reference strains. A maximum of 27 fold resistance to deltamethrin was observed in T. mazzottii, meanwhile, for permethrin, T. longipennis from Jalisco show the highest value of 3.19 fold. There was significantly increased activity of esterases in field populations in comparison with their corresponding reference strain. The results of the search of kdr mutations related to the resistance to deltamethrin and permethrin in the evaluated species show the presence of mutations in the field populations, as is the case with individuals of T. mazzottii, for which the mutation was found A943V, and for the two populations of T. longipennis included in this study, we report the presence of the kdr mutation K964R. Evaluation of the various mechanisms involved in resistance to pyrethroids in triatomines from Mexico could guide us to the real justification for insecticide resistance monitoring.


Assuntos
Resistência a Inseticidas , Nitrilas , Permetrina , Piretrinas , Triatoma/genética , Animais , Esterases/genética , Esterases/metabolismo , Inativação Metabólica/genética , Insetos Vetores/genética , Dose Letal Mediana , México , Mutação , Triatoma/enzimologia
17.
Pest Manag Sci ; 75(6): 1681-1688, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30520256

RESUMO

BACKGROUND: Knockdown resistance is conferred primarily by non-synonymous mutations that reduce pyrethroids binding to voltage-gated sodium channels. In 2014, kdr mutation V1016I in Aedes aegypti populations resistant to pyrethroids was reported for the first time in Colombiα, in 2016 another kdr mutation, F1534C, and in 2018 the mutation V419L. Nine populations of A. aegypti, previously characterized as being resistant to λ-cyhalothrin, deltamethrin, cyfluthrin and permethrin, were used for this study. Genomic DNA was used to determine genotypes by allele-specific PCR for mutations V1016I and F1534C, and to determine their association with pyrethroid resistance. RESULTS: All the populations analyzed showed both mutations, with allelic frequencies of 0.07-0.35 for I1016 and 0.47-0.88 for C1534. A percentage of co-occurrence of mutant homozygotes I1016/C1534 of 5.3% was detected. A significant positive correlation was found between the frequency of the genotype I1016 and the resistance to permethrin, λ-cyhalothrin and cyfluthrin, but not to deltamethrin; on the other hand, the correlation was not significant for the C1534 genotype and the four pyrethroids evaluated. No significant correlation was found between the frequencies of the mutations V1016I and F1534C. CONCLUSIONS: Both mutations V1016I and F1534C are present in A. aegypti populations of the Colombian Caribbean, and although the frequency of F1534C exceeds V1016I, the latter was correlated to resistance to pyrethroid insecticides. © 2018 Society of Chemical Industry.


Assuntos
Aedes/genética , Resistência a Inseticidas/genética , Mutação , Piretrinas , Canais de Sódio Disparados por Voltagem/genética , Animais , Bioensaio , Região do Caribe , Colômbia , Frequência do Gene , Técnicas de Genotipagem
18.
Sci Rep ; 8(1): 6747, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29712956

RESUMO

Aedes aegypti is the primary urban mosquito vector of viruses causing dengue, Zika and chikungunya fevers -for which vaccines and effective pharmaceuticals are still lacking. Current strategies to suppress arbovirus outbreaks include removal of larval-breeding sites and insecticide treatment of larval and adult populations. Insecticidal control of Ae. aegypti is challenging, due to a recent rapid global increase in knockdown-resistance (kdr) to pyrethroid insecticides. Widespread, heavy use of pyrethroid space-sprays has created an immense selection pressure for kdr, which is primarily under the control of the voltage-gated sodium channel gene (vgsc). To date, eleven replacements in vgsc have been discovered, published and shown to be associated with pyrethroid resistance to varying degrees. In Mexico, F1,534C and V1,016I have co-evolved in the last 16 years across Ae. aegypti populations. Recently, a novel replacement V410L was identified in Brazil and its effect on vgsc was confirmed by electrophysiology. Herein, we screened V410L in 25 Ae. aegypti historical collections from Mexico, the first heterozygote appeared in 2002 and frequencies have increased in the last 16 years alongside V1,016I and F1,534C. Knowledge of the specific vgsc replacements and their interaction to confer resistance is essential to predict and to develop strategies for resistance management.


Assuntos
Aedes/genética , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Piretrinas/farmacologia , Aedes/efeitos dos fármacos , Aedes/virologia , Animais , Brasil/epidemiologia , Febre de Chikungunya/genética , Febre de Chikungunya/transmissão , Febre de Chikungunya/virologia , Dengue/genética , Dengue/transmissão , Dengue/virologia , Inseticidas/efeitos adversos , Inseticidas/farmacologia , México , Mutação , Domínios Proteicos/genética , Piretrinas/efeitos adversos , Zika virus/genética , Zika virus/patogenicidade
19.
Parasit Vectors ; 11(1): 282, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29724237

RESUMO

BACKGROUND: Understanding mechanisms driving insecticide resistance in vector populations remains a public health priority. To date, most research has focused on the genetic mechanisms underpinning resistance, yet it is unclear what role environmental drivers may play in shaping phenotypic expression. One of the key environmental drivers of Aedes aegypti mosquito population dynamics is resource-driven intraspecific competition at the larval stage. We experimentally investigated the role of density-dependent larval competition in mediating resistance evolution in Ae. aegypti, using knockdown resistance (kdr) as a marker of genotypic resistance and CDC bottle bioassays to determine phenotype. We reared first-instar larvae from susceptible and pyrethroid-resistant field-derived populations of Ae. aegypti at high and low density and measured the resulting phenotypic resistance and population kdr allele frequencies. RESULTS: At low density, only 48.2% of the resistant population was knocked down, yet at high density, the population was no longer phenotypically resistant - 93% were knocked down when exposed to permethrin, which is considered susceptible according to WHO guidelines. Furthermore, the frequency of the C1534 kdr allele in the resistant population at high density decreased from 0.98 ± 0.04 to 0.69 ± 0.04 in only one generation of selection. CONCLUSIONS: Our results indicate that larval conditions, specifically density, can impact both phenotype and genotype of pyrethroid-resistant populations. Furthermore, phenotypic susceptibility to pyrethroids may be re-established in a resistant population through a gene x environment interaction, a finding that can lead to the development of novel resistance management strategies that capitalize on density-induced costs.


Assuntos
Aedes/efeitos dos fármacos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Piretrinas/farmacologia , Aedes/genética , Alelos , Animais , Bioensaio , Comportamento Competitivo , Frequência do Gene , Genótipo , Larva/fisiologia , Mosquitos Vetores , Mutação , Fenótipo
20.
Pest Manag Sci ; 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29575404

RESUMO

BACKGROUND: The control of Aedes aegypti (L.), the main urban vector that causes arboviral diseases such as dengue, Chikungunya and Zika, has proved to be a challenge because of a rapid increase in insecticide resistance. Therefore, adequate monitoring of insecticide resistance is an essential element in the control of Ae. aegypti and the diseases it transmits. We estimated the frequency and intensity (Resistance Frequency Rapid Diagnostic Test [F-RDT] and Resistance Intensity Rapid Diagnostic Test [I-RDT]) of pyrethroid resistance in populations of Ae. aegypti from Mexico using the bottle bioassay and results were related to the frequencies of knockdown resistance (kdr) mutations V1016I and F1534C. RESULTS: All populations under study were resistant to the pyrethroids: bifenthrin (99%), d-(cis-trans)-phenothrin (6.3% cis, 91.7% trans) and permethrin (99.5%) according to F-RDT, and showed moderate to high-intensity resistance at 10× the diagnostic dose (DD) in I-RDT. Frequencies of the kdr mutation V1016I in Ae. aegypti populations were correlated with moderate permethrin resistance at 10× DD, whereas F1534C mutation frequencies were correlated with high bifenthrin resistance at 5× DD. Both I1016 and C1535 were highly correlated with high-intensity phenothrin resistance at 1× to 10× DD. CONCLUSIONS: This study showed that high frequencies of kdr mutations V1016I and F1534C are reflected in the results of F-RDT and I-RDT tests. Bioassays in conjunction with the characterization of genetic resistance mechanisms are indispensable in the strategic and rational management of resistance in mosquitoes. © 2018 Society of Chemical Industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...