Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Genet ; 61(7): 633-644, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38531627

RESUMO

BACKGROUND: Ellis-van Creveld syndrome (EvC) is a recessive disorder characterised by acromesomelic limb shortening, postaxial polydactyly, nail-teeth dysplasia and congenital cardiac defects, primarily caused by pathogenic variants in EVC or EVC2. Weyers acrofacial dysostosis (WAD) is an ultra-rare dominant condition allelic to EvC. The present work aimed to enhance current knowledge on the clinical manifestations of EvC and WAD and broaden their mutational spectrum. METHODS: We conducted molecular studies in 46 individuals from 43 unrelated families with a preliminary clinical diagnosis of EvC and 3 affected individuals from a family with WAD and retrospectively analysed clinical data. The deleterious effect of selected variants of uncertain significance was evaluated by cellular assays. MAIN RESULTS: We identified pathogenic variants in EVC/EVC2 in affected individuals from 41 of the 43 families with EvC. Patients from each of the two remaining families were found with a homozygous splicing variant in WDR35 and a de novo heterozygous frameshift variant in GLI3, respectively. The phenotype of these patients showed a remarkable overlap with EvC. A novel EVC2 C-terminal truncating variant was identified in the family with WAD. Deep phenotyping of the cohort recapitulated 'classical EvC findings' in the literature and highlighted findings previously undescribed or rarely described as part of EvC. CONCLUSIONS: This study presents the largest cohort of living patients with EvC to date, contributing to better understanding of the full clinical spectrum of EvC. We also provide comprehensive information on the EVC/EVC2 mutational landscape and add GLI3 to the list of genes associated with EvC-like phenotypes.


Assuntos
Síndrome de Ellis-Van Creveld , Linhagem , Fenótipo , Humanos , Síndrome de Ellis-Van Creveld/genética , Síndrome de Ellis-Van Creveld/patologia , Masculino , Feminino , Criança , Proteínas de Membrana/genética , Mutação , Pré-Escolar , Proteína Gli3 com Dedos de Zinco/genética , Adolescente , Adulto , Proteínas do Tecido Nervoso/genética , Estudos de Coortes , Lactente , Proteínas/genética , Estudos Retrospectivos , Peptídeos e Proteínas de Sinalização Intercelular
2.
Am J Hum Genet ; 109(10): 1828-1849, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36084634

RESUMO

Orofaciodigital syndrome (OFD) is a genetically heterogeneous ciliopathy characterized by anomalies of the oral cavity, face, and digits. We describe individuals with OFD from three unrelated families having bi-allelic loss-of-function variants in SCNM1 as the cause of their condition. SCNM1 encodes a protein recently shown to be a component of the human minor spliceosome. However, so far the effect of loss of SCNM1 function on human cells had not been assessed. Using a comparative transcriptome analysis between fibroblasts derived from an OFD-affected individual harboring SCNM1 mutations and control fibroblasts, we identified a set of genes with defective minor intron (U12) processing in the fibroblasts of the affected subject. These results were reproduced in SCNM1 knockout hTERT RPE-1 (RPE-1) cells engineered by CRISPR-Cas9-mediated editing and in SCNM1 siRNA-treated RPE-1 cultures. Notably, expression of TMEM107 and FAM92A encoding primary cilia and basal body proteins, respectively, and that of DERL2, ZC3H8, and C17orf75, were severely reduced in SCNM1-deficient cells. Primary fibroblasts containing SCNM1 mutations, as well as SCNM1 knockout and SCNM1 knockdown RPE-1 cells, were also found with abnormally elongated cilia. Conversely, cilia length and expression of SCNM1-regulated genes were restored in SCNM1-deficient fibroblasts following reintroduction of SCNM1 via retroviral delivery. Additionally, functional analysis in SCNM1-retrotransduced fibroblasts showed that SCNM1 is a positive mediator of Hedgehog (Hh) signaling. Our findings demonstrate that defective U12 intron splicing can lead to a typical ciliopathy such as OFD and reveal that primary cilia length and Hh signaling are regulated by the minor spliceosome through SCNM1 activity.


Assuntos
Ciliopatias , Síndromes Orofaciodigitais , Cílios/genética , Cílios/metabolismo , Ciliopatias/genética , Proteínas Hedgehog/metabolismo , Humanos , Íntrons/genética , Mutação/genética , Síndromes Orofaciodigitais/genética , Splicing de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Interferente Pequeno/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo
3.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884915

RESUMO

In Yarrowia lipolytica, expression of the genes encoding the enzymes of the N-acetylglucosamine (NAGA) utilization pathway (NAG genes) becomes independent of the presence of NAGA in a Ylnag5 mutant lacking NAGA kinase. We addressed the question of whether the altered transcription was due to a lack of kinase activity or to a moonlighting role of this protein. Glucosamine-6-phosphate deaminase (Nag1) activity was measured as a reporter of NAG genes expression. The NGT1 gene encoding the NAGA transporter was deleted, creating a Ylnag5 ngt1 strain. In glucose cultures of this strain, Nag1 activity was similar to that of the Ylnag5 strain, ruling out the possibility that NAGA derived from cell wall turnover could trigger the derepression. Heterologous NAGA kinases were expressed in a Ylnag5 strain. Among them, the protein from Arabidopsis thaliana did not restore kinase activity but lowered Nag1 activity 4-fold with respect to a control. Expression in the Ylnag5 strain of YlNag5 variants F320S or D214V with low kinase activity caused a repression similar to that of the wild-type protein. Together, these results indicate that YlNag5 behaves as a moonlighting protein. An RNA-seq analysis revealed that the Ylnag5 mutation had a limited transcriptomic effect besides derepression of the NAG genes.


Assuntos
Perfilação da Expressão Gênica/métodos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Yarrowia/crescimento & desenvolvimento , Arabidopsis/enzimologia , Arabidopsis/genética , Clonagem Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Mutação , Análise de Sequência de RNA , Yarrowia/enzimologia , Yarrowia/genética
4.
Am J Hum Genet ; 107(5): 989-999, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33053334

RESUMO

Osteogenesis imperfecta (OI) is characterized primarily by susceptibility to fractures with or without bone deformation. OI is genetically heterogeneous: over 20 genetic causes are recognized. We identified bi-allelic pathogenic KDELR2 variants as a cause of OI in four families. KDELR2 encodes KDEL endoplasmic reticulum protein retention receptor 2, which recycles ER-resident proteins with a KDEL-like peptide from the cis-Golgi to the ER through COPI retrograde transport. Analysis of patient primary fibroblasts showed intracellular decrease of HSP47 and FKBP65 along with reduced procollagen type I in culture media. Electron microscopy identified an abnormal quality of secreted collagen fibrils with increased amount of HSP47 bound to monomeric and multimeric collagen molecules. Mapping the identified KDELR2 variants onto the crystal structure of G. gallus KDELR2 indicated that these lead to an inactive receptor resulting in impaired KDELR2-mediated Golgi-ER transport. Therefore, in KDELR2-deficient individuals, OI most likely occurs because of the inability of HSP47 to bind KDELR2 and dissociate from collagen type I. Instead, HSP47 remains bound to collagen molecules extracellularly, disrupting fiber formation. This highlights the importance of intracellular recycling of ER-resident molecular chaperones for collagen type I and bone metabolism and a crucial role of HSP47 in the KDELR2-associated pathogenic mechanism leading to OI.


Assuntos
Osso e Ossos/metabolismo , Colágeno Tipo I/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Osteogênese Imperfeita/genética , Proteínas de Transporte Vesicular/metabolismo , Adulto , Alelos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Osso e Ossos/patologia , Galinhas , Pré-Escolar , Colágeno Tipo I/química , Colágeno Tipo I/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Expressão Gênica , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Proteínas de Choque Térmico HSP47/química , Proteínas de Choque Térmico HSP47/genética , Humanos , Lactente , Masculino , Osteogênese Imperfeita/diagnóstico , Osteogênese Imperfeita/metabolismo , Osteogênese Imperfeita/patologia , Linhagem , Cultura Primária de Células , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Transporte Proteico , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
5.
Sci Rep ; 8(1): 16949, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446667

RESUMO

Saccharomyces cerevisiae can transport and phosphorylate glucosamine, but cannot grow on this amino sugar. While an enzyme catalyzing the reaction from glucosamine-6-phosphate to fructose-6-phosphate, necessary for glucosamine catabolism, is present in yeasts using N-acetylglucosamine as carbon source, a sequence homology search suggested that such an enzyme is absent from Saccharomyces cerevisiae. The gene YlNAG1 encoding glucosamine-6-phosphate deaminase from Yarrowia lipolytica was introduced into S. cerevisiae and growth in glucosamine tested. The constructed strain grew in glucosamine as only carbon and nitrogen source. Growth on the amino sugar required respiration and caused an important ammonium excretion. Strains overexpressing YlNAG1 and one of the S. cerevisiae glucose transporters HXT1, 2, 3, 4, 6 or 7 grew in glucosamine. The amino sugar caused catabolite repression of different enzymes to a lower extent than that produced by glucose. The availability of a strain of S. cerevisiae able to grow on glucosamine opens new possibilities to investigate or manipulate pathways related with glucosamine metabolism in a well-studied organism.


Assuntos
Carbono/metabolismo , Glucosamina/metabolismo , Engenharia Metabólica/métodos , Nitrogênio/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Acetilglucosamina/metabolismo , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Amino Açúcares/metabolismo , Frutosefosfatos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucosamina/análogos & derivados , Glucose-6-Fosfato/análogos & derivados , Glucose-6-Fosfato/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Yarrowia/enzimologia , Yarrowia/genética
6.
Microbiol Mol Biol Rev ; 80(3): 765-77, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27466281

RESUMO

Moonlighting proteins are multifunctional proteins that participate in unrelated biological processes and that are not the result of gene fusion. A certain number of these proteins have been characterized in yeasts, and the easy genetic manipulation of these microorganisms has been useful for a thorough analysis of some cases of moonlighting. As the awareness of the moonlighting phenomenon has increased, a growing number of these proteins are being uncovered. In this review, we present a crop of newly identified moonlighting proteins from yeasts and discuss the experimental evidence that qualifies them to be classified as such. The variety of moonlighting functions encompassed by the proteins considered extends from control of transcription to DNA repair or binding to plasminogen. We also discuss several questions pertaining to the moonlighting condition in general. The cases presented show that yeasts are important organisms to be used as tools to understand different aspects of moonlighting proteins.


Assuntos
Candida albicans/enzimologia , Proteínas Fúngicas/metabolismo , Kluyveromyces/enzimologia , Enzimas Multifuncionais/metabolismo , Saccharomyces cerevisiae/enzimologia , Schizosaccharomyces/enzimologia , Candida albicans/genética , Candida albicans/metabolismo , Reparo do DNA/genética , Proteínas Fúngicas/genética , Kluyveromyces/genética , Kluyveromyces/metabolismo , Enzimas Multifuncionais/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
7.
Biochim Biophys Acta ; 1850(7): 1362-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25810078

RESUMO

BACKGROUND: A low level of glucose is required for maximal transcription of the SUC2 gene in Saccharomyces cerevisiae. Although the repressor Rgt1 binds the SUC2 promoter in gel-shift assays, it has been reported that Rgt1 has only minimal effects on SUC2 expression. Rgt1 acts together with Mth1 to repress the HXT genes encoding glucose transporters, and the release of Rgt1 from some HXT promoters requires cAMP-dependent protein kinase (PKA) activity. METHODS: The genes RGT1 and MTH1 have been disrupted and the SUC2 promoter modified in several S. cerevisiae backgrounds. Yeast cells were grown in different carbon sources in the presence or absence of 0.1 or 2% glucose, and invertase was assayed in whole cells. RESULTS: Galactose, glycerol or ethanol hindered invertase induction by low glucose, but lactate did not. During growth in lactate, deletion of RGT1 or MTH1 caused a marked increase in invertase levels, and elimination of the Rgt1-binding site in the SUC2 promoter caused also invertase induction. PKA activity decreased invertase levels in cells growing in lactate, and increased them during growth in lactate+0.1% glucose. CONCLUSIONS: The low level of expression of SUC2 in the absence of glucose is mainly due to repression by the Rgt1-Mth1 complex. Repression is dependent on PKA activity, but not on any specific Tpk isoenzyme. GENERAL SIGNIFICANCE: The results show that previously overlooked regulatory elements, such as Rgt1 and Tpks, participate in the control of SUC2 expression in S.cerevisiae.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , beta-Frutofuranosidase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas de Ligação a DNA/genética , Etanol/farmacologia , Galactose/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Isoenzimas/genética , Isoenzimas/metabolismo , Mutação , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , beta-Frutofuranosidase/genética
8.
PLoS One ; 10(3): e0122135, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25816199

RESUMO

The non-conventional yeast Yarrowia lipolytica possesses an ORF, YALI0E20207g, which encodes a protein with an amino acid sequence similar to hexokinases from different organisms. We have cloned that gene and determined several enzymatic properties of its encoded protein showing that it is an N-acetylglucosamine (NAGA) kinase. This conclusion was supported by the lack of growth in NAGA of a strain carrying a YALI0E20207g deletion. We named this gene YlNAG5. Expression of YlNAG5 as well as that of the genes encoding the enzymes of the NAGA catabolic pathway-identified by a BLAST search-was induced by this sugar. Deletion of YlNAG5 rendered that expression independent of the presence of NAGA in the medium and reintroduction of the gene restored the inducibility, indicating that YlNag5 participates in the transcriptional regulation of the NAGA assimilatory pathway genes. Expression of YlNAG5 was increased during sporulation and homozygous Ylnag5/Ylnag5 diploid strains sporulated very poorly as compared with a wild type isogenic control strain pointing to a participation of the protein in the process. Overexpression of YlNAG5 allowed growth in glucose of an Ylhxk1glk1 double mutant and produced, in a wild type background, aberrant morphologies in different media. Expression of the gene in a Saccharomyces cerevisiae hxk1 hxk2 glk1 triple mutant restored ability to grow in glucose.


Assuntos
Acetilglucosamina/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Yarrowia/enzimologia , Clonagem Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Filogenia , Transdução de Sinais , Yarrowia/genética , Yarrowia/crescimento & desenvolvimento
9.
Biochem Soc Trans ; 42(6): 1715-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25399595

RESUMO

The present article addresses the possibilities offered by yeasts to study the problem of the evolution of moonlighting proteins. It focuses on data available on hexokinase from Saccharomyces cerevisiae that moonlights in catabolite repression and on galactokinase from Kluyveromyces lactis that moonlights controlling the induction of the GAL genes. Possible experimental approaches to studying the evolution of moonlighting hexose kinases are suggested.


Assuntos
Evolução Molecular , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Galactoquinase/genética , Galactoquinase/metabolismo , Duplicação Gênica , Hexoquinase/genética , Hexoquinase/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
10.
Microb Cell Fact ; 11: 131, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22978798

RESUMO

BACKGROUND: Pyruvate-decarboxylase negative (Pdc⁻) strains of Saccharomyces cerevisiae combine the robustness and high glycolytic capacity of this yeast with the absence of alcoholic fermentation. This makes Pdc⁻S. cerevisiae an interesting platform for efficient conversion of glucose towards pyruvate-derived products without formation of ethanol as a by-product. However, Pdc⁻ strains cannot grow on high glucose concentrations and require C2-compounds (ethanol or acetate) for growth under conditions with low glucose concentrations, which hitherto has limited application in industry. RESULTS: Genetic analysis of a Pdc⁻ strain previously evolved to overcome these deficiencies revealed a 225 p in-frame internal deletion in MTH1, encoding a transcriptional regulator involved in glucose sensing. This internal deletion contains a phosphorylation site required for degradation, thereby hypothetically resulting in increased stability of the protein. Reverse engineering of this alternative MTH1 allele into a non-evolved Pdc⁻ strain enabled growth on 20 g l⁻¹ glucose and 0.3% (v/v) ethanol at a maximum specific growth rate (0.24 h⁻¹) similar to that of the evolved Pdc⁻ strain (0.23 h⁻¹). Furthermore, the reverse engineered Pdc⁻ strain grew on glucose as sole carbon source, albeit at a lower specific growth rate (0.10 h⁻¹) than the evolved strain (0.20 h⁻¹). The observation that overexpression of the wild-type MTH1 allele also restored growth of Pdc⁻S. cerevisiae on glucose is consistent with the hypothesis that the internal deletion results in decreased degradation of Mth1. Reduced degradation of Mth1 has been shown to result in deregulation of hexose transport. In Pdc⁻ strains, reduced glucose uptake may prevent intracellular accumulation of pyruvate and/or redox problems, while release of glucose repression due to the MTH1 internal deletion may contribute to alleviation of the C2-compound auxotrophy. CONCLUSIONS: In this study we have discovered and characterised a mutation in MTH1 enabling Pdc⁻ strains to grow on glucose as the sole carbon source. This successful example of reverse engineering not only increases the understanding of the glucose tolerance of evolved Pdc⁻ S. cerevisiae, but also allows introduction of this portable genetic element into various industrial yeast strains, thereby simplifying metabolic engineering strategies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Glucose/metabolismo , Piruvato Descarboxilase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Alelos , Sequência de Aminoácidos , Fermentação , Engenharia Metabólica , Dados de Sequência Molecular , Mutação , Piruvato Descarboxilase/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
11.
PLoS One ; 6(9): e23695, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21931609

RESUMO

We have cloned the Yarrowia lipolytica TPS1 gene encoding trehalose-6-P synthase by complementation of the lack of growth in glucose of a Saccharomyces cerevisiae tps1 mutant. Disruption of YlTPS1 could only be achieved with a cassette placed in the 3' half of its coding region due to the overlap of its sequence with the promoter of the essential gene YlTFC1. The Yltps1 mutant grew in glucose although the Y. lipolytica hexokinase is extremely sensitive to inhibition by trehalose-6-P. The presence of a glucokinase, insensitive to trehalose-6-P, that constitutes about 80% of the glucose phosphorylating capacity during growth in glucose may account for the growth phenotype. Trehalose content was below 1 nmol/mg dry weight in Y. lipolytica, but it increased in strains expressing YlTPS1 under the control of the YlTEF1 promoter or with a disruption of YALI0D15598 encoding a putative trehalase. mRNA levels of YlTPS1 were low and did not respond to thermal stresses, but that of YlTPS2 (YALI0D14476) and YlTPS3 (YALI0E31086) increased 4 and 6 times, repectively, by heat treatment. Disruption of YlTPS1 drastically slowed growth at 35°C. Homozygous Yltps1 diploids showed a decreased sporulation frequency that was ascribed to the low level of YALI0D20966 mRNA an homolog of the S. cerevisiae MCK1 which encodes a protein kinase that activates early meiotic gene expression.


Assuntos
Glucose/farmacologia , Glucosiltransferases/genética , Temperatura , Yarrowia/crescimento & desenvolvimento , Yarrowia/genética , Cromossomos Fúngicos/efeitos dos fármacos , Cromossomos Fúngicos/genética , Clonagem Molecular , Glucosiltransferases/deficiência , Resposta ao Choque Térmico/genética , Dados de Sequência Molecular , Mutação , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/genética , Trealase/genética , Trealose/metabolismo , Yarrowia/efeitos dos fármacos , Yarrowia/fisiologia
12.
IUBMB Life ; 63(7): 457-62, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21491559

RESUMO

This review considers the use of yeasts to study protein moonlighting functions. The cases discussed highlight the possibilities offered by the well-developed yeast genetics for the study of moonlighting mechanisms. The possibility to generate sets of mutants encoding different protein variants has allowed in some cases to map the regions that participate in the moonlighting function. We discuss cases of enzymes that moonlight in such different activities as control of transcription, assembly of multimeric proteins, stabilization of mitochondrial DNA or biosynthesis of CoA. The moonlighting role of an enzyme and its metabolic function seems to have evolved independently as indicated by the finding that a protein may moonlight in a yeast species but not in others. Yeasts may open ways to study possible evolutionary relationships among moonlighting proteins.


Assuntos
Proteínas Fúngicas/metabolismo , Leveduras/fisiologia , DNA Mitocondrial/metabolismo , Regulação Fúngica da Expressão Gênica , Leveduras/enzimologia , Leveduras/genética
13.
Eukaryot Cell ; 7(10): 1742-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18689525

RESUMO

The genes encoding gluconeogenic enzymes in the nonconventional yeast Yarrowia lipolytica were found to be differentially regulated. The expression of Y. lipolytica FBP1 (YlFBP1) encoding the key enzyme fructose-1,6-bisphosphatase was not repressed by glucose in contrast with the situation in other yeasts; however, this sugar markedly repressed the expression of YlPCK1, encoding phosphoenolpyruvate carboxykinase, and YlICL1, encoding isocitrate lyase. We constructed Y. lipolytica strains with two different disrupted versions of YlFBP1 and found that they grew much slower than the wild type in gluconeogenic carbon sources but that growth was not abolished as happens in most microorganisms. We attribute this growth to the existence of an alternative phosphatase with a high K(m) (2.3 mM) for fructose-1,6-bisphosphate. The gene YlFBP1 restored fructose-1,6-bisphosphatase activity and growth in gluconeogenic carbon sources to a Saccharomyces cerevisiae fbp1 mutant, but the introduction of the FBP1 gene from S. cerevisiae in the Ylfbp1 mutant did not produce fructose-1,6-bisphosphatase activity or growth complementation. Subcellular fractionation revealed the presence of fructose-1,6-bisphosphatase both in the cytoplasm and in the nucleus.


Assuntos
Frutose-Bifosfatase/metabolismo , Proteínas Fúngicas/metabolismo , Gluconeogênese , Glucose/metabolismo , Yarrowia/enzimologia , Yarrowia/crescimento & desenvolvimento , Núcleo Celular/química , Núcleo Celular/enzimologia , Núcleo Celular/genética , Clonagem Molecular , Citoplasma/química , Citoplasma/enzimologia , Citoplasma/genética , Frutose-Bifosfatase/análise , Frutose-Bifosfatase/genética , Proteínas Fúngicas/análise , Proteínas Fúngicas/genética , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Yarrowia/química , Yarrowia/genética
14.
Microbiol Mol Biol Rev ; 72(1): 197-210, table of contents, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18322039

RESUMO

Proteins able to participate in unrelated biological processes have been grouped under the generic name of moonlighting proteins. Work with different yeast species has uncovered a great number of moonlighting proteins and shown their importance for adequate functioning of the yeast cell. Moonlighting activities in yeasts include such diverse functions as control of gene expression, organelle assembly, and modification of the activity of metabolic pathways. In this review, we consider several well-studied moonlighting proteins in different yeast species, paying attention to the experimental approaches used to identify them and the evidence that supports their participation in the unexpected function. Usually, moonlighting activities have been uncovered unexpectedly, and up to now, no satisfactory way to predict moonlighting activities has been found. Among the well-characterized moonlighting proteins in yeasts, enzymes from the glycolytic pathway appear to be prominent. For some cases, it is shown that despite close phylogenetic relationships, moonlighting activities are not necessarily conserved among yeast species. Organisms may utilize moonlighting to add a new layer of regulation to conventional regulatory networks. The existence of this type of proteins in yeasts should be taken into account when designing mutant screens or in attempts to model or modify yeast metabolism.


Assuntos
Proteínas Fúngicas/metabolismo , Leveduras/genética , Leveduras/metabolismo
15.
Microbiology (Reading) ; 151(Pt 5): 1465-1474, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15870456

RESUMO

The phosphofructokinase from the non-conventional yeast Yarrowia lipolytica (YlPfk) was purified to homogeneity, and its encoding gene isolated. YlPfk is an octamer of 869 kDa composed of a single type of subunit, and shows atypical kinetic characteristics. It did not exhibit cooperative kinetics for fructose 6-phosphate (Hill coefficient, h 1.1; S0.5 52 microM), it was inhibited moderately by MgATP (Ki 3.5 mM), and it was strongly inhibited by phosphoenolpyruvate (Ki 61 microM). Fructose 2,6-bisphosphate did not activate the enzyme, and AMP and ADP were also without effect. The gene YlPFK1 has no introns, and encodes a putative protein of 953 aa, with a molecular mass consistent with the subunit size found after purification. Disruption of the gene abolished growth in glucose and Pfk activity, while reintroduction of the gene restored both properties. This indicates that Y. lipolytica has only one gene encoding Pfk, and supports the finding that the enzyme consists of identical subunits. Glucose did not interfere with growth of the Ylpfk1 disruptant in permissive carbon sources. The unusual kinetic characteristics of YlPfk, and the intracellular concentrations of glycolytic intermediates during growth in glucose, suggest that YlPfk may play an important role in the regulation of glucose metabolism in Y. lipolytica, different from the role played by the enzyme in Saccharomyces cerevisiae.


Assuntos
Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Fosfofrutoquinases/química , Fosfofrutoquinases/metabolismo , Yarrowia/enzimologia , Sequência de Aminoácidos , Meios de Cultura , Cinética , Dados de Sequência Molecular , Fosfofrutoquinases/genética , Fosfofrutoquinases/isolamento & purificação , Alinhamento de Sequência , Análise de Sequência de DNA , Yarrowia/genética , Yarrowia/crescimento & desenvolvimento
16.
Eukaryot Cell ; 4(2): 356-64, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15701798

RESUMO

We have cloned and characterized the gene PYC1, encoding the unique pyruvate carboxylase in the dimorphic yeast Yarrowia lipolytica. The protein putatively encoded by the cDNA has a length of 1,192 amino acids and shows around 70% identity with pyruvate carboxylases from other organisms. The corresponding genomic DNA possesses an intron of 269 bp located 133 bp downstream of the starting ATG. In the branch motif of the intron, the sequence CCCTAAC, not previously found at this place in spliceosomal introns of Y. lipolytica, was uncovered. Disruption of the PYC1 gene from Y. lipolytica did not abolish growth in glucose-ammonium medium, as is the case in other eukaryotic microorganisms. This unusual growth phenotype was due to an incomplete glucose repression of the function of the glyoxylate cycle, as shown by the lack of growth in that medium of double pyc1 icl1 mutants lacking both pyruvate carboxylase and isocitrate lyase activity. These mutants grew when glutamate, aspartate, or Casamino Acids were added to the glucose-ammonium medium. The cDNA from the Y. lipolytica PYC1 gene complemented the growth defect of a Saccharomyces cerevisiae pyc1 pyc2 mutant, but introduction of either the S. cerevisiae PYC1 or PYC2 gene into Y. lipolytica did not result in detectable pyruvate carboxylase activity or in growth on glucose-ammonium of a Y. lipolytica pyc1 icl1 double mutant.


Assuntos
Isoenzimas , Piruvato Carboxilase , Yarrowia/enzimologia , Yarrowia/crescimento & desenvolvimento , Amônia/metabolismo , Meios de Cultura/química , Regulação Fúngica da Expressão Gênica , Teste de Complementação Genética , Glucose/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Mutação , Fenótipo , Piruvato Carboxilase/genética , Piruvato Carboxilase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Yarrowia/genética
17.
FEMS Yeast Res ; 4(7): 751-6, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15093779

RESUMO

To optimize the recovery of mRNAs extracted from yeast, different methods for sampling the yeast cells have been compared. For Saccharomyces cerevisiae strains growing on gluconeogenic carbon sources (derepressed cells) rapid filtration allowed much higher yields (3-10 fold) than centrifugation at room temperature or at 4 degrees C. Recovery of total RNA was similar with the different procedures. For S. cerevisiae growing on glucose, filtration caused a 2-4 fold improvement on the mRNA yields obtained from cells sampled by centrifugation. It was also observed that, when derepressed cells of S. cerevisiae W303-1A were collected by filtration and flash-frozen, part of the 25S and 18S rRNAs (up to 50%) was recovered in an unprocessed 32S or 33S form.


Assuntos
RNA Fúngico/isolamento & purificação , RNA Mensageiro/isolamento & purificação , Saccharomyces cerevisiae/química , Sequência de Bases , DNA Fúngico/genética , Micologia/métodos , RNA Fúngico/genética , RNA Mensageiro/genética , RNA Ribossômico/genética , RNA Ribossômico/isolamento & purificação , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/isolamento & purificação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Especificidade da Espécie , Yarrowia/química , Yarrowia/genética
18.
FEMS Yeast Res ; 4(4-5): 351-9, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14734015

RESUMO

The view of the role of trehalose in yeast has changed in the last few years. For a long time considered a reserve carbohydrate, it gained new importance when its function in the acquisition of thermotolerance was demonstrated. More recently the cellular processes in which the trehalose biosynthetic pathway has been implicated range from the control of glycolysis to sporulation and infectivity by certain fungal pathogens. There is now enough experimental evidence to conclude that trehalose 6-phosphate, an intermediate of trehalose biosynthesis, is an important metabolic regulator in such different organisms as yeasts or plants. Its inhibition of hexokinase plays a key role in the control of the glycolytic flux in Saccharomyces cerevisiae but other, likely important, sites of action are still unknown. We present examples of the phenotypes produced by mutations in the two steps of the trehalose biosynthetic pathway in different yeasts and fungi, and whenever possible examine the molecular explanations advanced to interpret them.


Assuntos
Fungos/metabolismo , Trealose/biossíntese , Leveduras/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Saccharomyces cerevisiae/enzimologia
19.
Mol Biol Cell ; 15(3): 1356-63, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14699057

RESUMO

3-Hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) is a key enzyme in the sterol biosynthesis pathway, but its subcellular distribution in the Trypanosomatidae family is somewhat controversial. Trypanosoma cruzi and Leishmania HMGRs are closely related in their catalytic domains to bacterial and eukaryotic enzymes described but lack an amino-terminal domain responsible for the attachment to the endoplasmic reticulum. In the present study, digitonin-titration experiments together with immunoelectron microscopy were used to establish the intracellular localization of HMGR in these pathogens. Results obtained with wild-type cells and transfectants overexpressing the enzyme established that HMGR in both T. cruzi and Leishmania major is localized primarily in the mitochondrion and that elimination of the mitochondrial targeting sequence in Leishmania leads to protein accumulation in the cytosolic compartment. Furthermore, T. cruzi HMGR is efficiently targeted to the mitochondrion in yeast cells. Thus, when the gene encoding T. cruzi HMGR was expressed in a hmg1 hmg2 mutant of Saccharomyces cerevisiae, the mevalonate auxotrophy of mutant cells was relieved, and immunoelectron analysis showed that the parasite enzyme exhibits a mitochondrial localization, suggesting a conservation between the targeting signals of both organisms.


Assuntos
Hidroximetilglutaril-CoA Redutases/metabolismo , Ácido Mevalônico/metabolismo , Mitocôndrias/enzimologia , Trypanosoma cruzi/enzimologia , Trypanosomatina/enzimologia , Sequência de Aminoácidos , Animais , Clonagem Molecular , Digitonina/química , Leishmania/enzimologia , Leishmania/ultraestrutura , Microscopia Imunoeletrônica , Mitocôndrias/ultraestrutura , Dados de Sequência Molecular , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Trypanosoma cruzi/ultraestrutura , Trypanosomatina/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...