Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Perinatol ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844521

RESUMO

OBJECTIVE: To explore the association between antenatal magnesium sulfate (MgSO4), mortality and incidence of intraventricular hemorrhage (IVH) in very low birth weight (VLBW) infants. STUDY DESIGN: Retrospective, cohort study of infants <32 weeks' GA born at centers of NEOCOSUR Network between January 2015 and December 2020. Subjects were categorized as exposed vs non-exposed to antenatal MgSO4. Primary outcomes were death, incidence of severe IVH (Grade III-IV) and severe IVH/death. Secondary outcomes included relevant morbidities. RESULTS: 7418 VLBW infants were eligible. Antenatal MgSO4 was associated with a significantly decreased death rate after admission (aOR 0.67 [95% CI, 0.49-0.94]) and severe IVH/ death (aOR 0.68 [95% CI, 0.50-0.93]). No significant reduction in severe IVH was observed (aOR 1.11 [95% CI, 0.72-1.71]). No differences between groups were observed in rates of morbidities. CONCLUSION: Antenatal MgSO4 was associated with a decreased death rate after admission and in severe IVH/ death.

2.
Viruses ; 16(3)2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543796

RESUMO

Porcine epidemic diarrhea virus (PEDV) has affected the pork industry worldwide and during outbreaks the mortality of piglets has reached 100%. Lipid nanocarriers are commonly used in the development of immunostimulatory particles due to their biocompatibility and slow-release delivery properties. In this study, we developed a lipid nanoparticle (LNP) complex based on glycyrrhizinic acid (GA) and tested its efficacy as an adjuvant in mice immunized with the recombinant N-terminal domain (NTD) of porcine epidemic diarrhea virus (PEDV) spike (S) protein (rNTD-S). The dispersion stability analysis (Z-potential -27.6 mV) confirmed the size and charge stability of the LNP-GA, demonstrating that the particles were homogeneously dispersed and strongly anionic, which favors nanoparticles binding with the rNTD-S protein, which showed a slightly positive charge (2.11 mV) by in silico analysis. TEM image of LNP-GA revealed nanostructures with a spherical-bilayer lipid vesicle (~100 nm). The immunogenicity of the LNP-GA-rNTD-S complex induced an efficient humoral response 14 days after the first immunization (p < 0.05) as well as an influence on the cellular immune response by decreasing serum TNF-α and IL-1ß concentrations, which was associated with an anti-inflammatory effect.


Assuntos
Infecções por Coronavirus , Lipossomos , Nanopartículas , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vacinas Virais , Animais , Suínos , Camundongos , Anticorpos Antivirais , Vírus da Diarreia Epidêmica Suína/genética , Ácido Glicirrízico/farmacologia , Glicoproteína da Espícula de Coronavírus , Adjuvantes Imunológicos , Imunidade , Proteínas Recombinantes , Lipídeos
3.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399437

RESUMO

Previous studies provided evidence of the benefits of omega-3 polyunsaturated fatty acids (ω-3 PUFA) on the cardiovascular system and inflammation. However, its possible effect on skeletal muscle is unknown. This study aimed to evaluate whether ω-3 PUFA reverses the dysregulation of metabolic modulators in the skeletal muscle of rats on a high-fat obesogenic diet. For this purpose, an animal model was developed using male Wistar rats with a high-fat diet (HFD) and subsequently supplemented with ω-3 PUFA. Insulin resistance was assessed, and gene and protein expression of metabolism modulators in skeletal muscle was also calculated using PCR-RT and Western blot. Our results confirmed that in HFD rats, zoometric parameters and insulin resistance were increased compared to SD rats. Furthermore, we demonstrate reduced gene and protein expression of peroxisome proliferator-activated receptors (PPARs) and insulin signaling molecules. After ω-3 PUFA supplementation, we observed that glucose (24.34%), triglycerides (35.78%), and HOMA-IR (40.10%) were reduced, and QUICKI (12.16%) increased compared to HFD rats. Furthermore, in skeletal muscle, we detected increased gene and protein expression of PPAR-α, PPAR-γ, insulin receptor (INSR), insulin receptor substrate 1 (ISR-1), phosphatidylinositol-3-kinase (PI3K), and glucose transporter 4 (GLUT-4). These findings suggest that ω-3 PUFAs decrease insulin resistance of obese skeletal muscle.

4.
J Mol Biol ; 435(23): 168297, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37797831

RESUMO

The history of DNA vaccine began as early as the 1960s with the discovery that naked DNA can transfect mammalian cells in vivo. In 1992, the evidence that such transfection could lead to the generation of antigen-specific antibody responses was obtained and supported the development of this technology as a novel vaccine platform. The technology then attracted immense interest and high hopes in vaccinology, as evidence of high immunogenicity and protection against virulent challenges accumulated from several animal models for several diseases. In particular, the capacity to induce T-cell responses was unprecedented in non-live vaccines. However, the technology suffered its major knock when the success in animals failed to translate to humans, where DNA vaccine candidates were shown to be safe but remained poorly immunogenic, or not associated with clinical benefit. Thanks to a thorough exploration of the molecular mechanisms of action of these vaccines, an impressive range of approaches have been and are currently being explored to overcome this major challenge. Despite limited success so far in humans as compared with later genetic vaccine technologies such as viral vectors and mRNA, DNA vaccines are not yet optimised for human use and may still realise their potential.


Assuntos
Vacinas de DNA , Animais , Humanos , Vetores Genéticos , Linfócitos T/imunologia , Vacinas de DNA/história , Vacinas de DNA/imunologia
5.
Sci Rep ; 13(1): 12593, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537165

RESUMO

Sialic acids (Sias) are a class of sugar molecules with a parent nine-carbon neuraminic acid, generally present at the ends of carbohydrate chains, either attached to cellular surfaces or as secreted glycoconjugates. Given their position and structural diversity, Sias modulate a wide variety of biological processes. However, little is known about the role of Sias in human adipose tissue, or their implications for health and disease, particularly among individuals following different dietary patterns. The goal of this study was to measure N-Acetylneuraminic acid (Neu5Ac), N-Glycolylneuraminic acid (Neu5Gc), and 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN) concentrations in adipose tissue samples from participants in the Adventist Health Study-2 (AHS-2) and to compare the abundance of these Sias in individuals following habitual, long-term vegetarian or non-vegetarian dietary patterns. A method was successfully developed for the extraction and detection of Sias in adipose tissue. Sias levels were quantified in 52 vegans, 56 lacto-vegetarians, and 48 non-vegetarians using LC-MS/MS with Neu5Ac-D-1,2,3-13C3 as an internal standard. Dietary groups were compared using linear regression. Vegans and lacto-ovo-vegetarians had significantly higher concentrations of Neu5Ac relative to non-vegetarians. While KDN levels tended to be higher in vegans and lacto-ovo-vegetarians, these differences were not statistically significant. However, KDN levels were significantly inversely associated with body mass index. In contrast, Neu5Gc was not detected in human adipose samples. It is plausible that different Neu5Ac concentrations in adipose tissues of vegetarians, compared to those of non-vegetarians, reflect a difference in the baseline inflammatory status between the two groups. Epidemiologic studies examining levels of Sias in human adipose tissue and other biospecimens will help to further explore their roles in development and progression of inflammatory conditions and chronic diseases.


Assuntos
Ácidos Siálicos , Açúcares Ácidos , Humanos , Ácidos Siálicos/química , Cromatografia Líquida , Açúcares Ácidos/química , Espectrometria de Massas em Tandem , Tecido Adiposo , Dieta Vegetariana
6.
Clin Neurol Neurosurg ; 233: 107904, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37499302

RESUMO

BACKGROUND: Glioblastoma is one of the most common brain tumors in adult populations, usually carrying a poor prognosis. While several studies have researched the impact of anti-angiogenic therapies, especially anti-VEFG treatments in glioblastoma, few have attempted to assess its progress using imaging studies. PURPOSE: We attempted to analyze whether relative cerebral blood volume (rCBV) from dynamic susceptibility-weighted contrast-enhanced MRI (DSC-MRI) could predict response in patients with glioblastoma undergoing Bevacizumab (BVZ) treatment. METHODS: We performed a retrospective study evaluating patients with recurrent glioblastoma receiving anti-angiogenic therapy with BVZ between 2012 and 2017 in our institution. Patients were scheduled for routine MRIs at baseline and first-month follow-up visits. Studies were processed for DSC-MRI, cT1, and FLAIR images, from which relative cerebral blood volume measurements were obtained. We assessed patient response using the Response Assessment in Neuro-Oncology (RANO) working group criteria and overall survival. RESULTS: 40 patients were included in the study and were classified as Bevacizumab responders and non-responders. The average rCBV before treatment was 4.5 for both groups, and average rCBV was 2.5 for responders and 5.4 for non-responders. ROC curve set a cutoff point of 3.7 for rCBV predictive of response to BVZ. Cox Multivariate analysis only showed rCBV as a predictive factor of OS. CONCLUSION: A statistically significant difference was found in rCBV between patients who responded and those who did not respond to BVZ treatment. rCBV may be a low-cost and effective marker to assess response to Bevacizumab treatment in GBM.

7.
Vaccines (Basel) ; 11(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36992153

RESUMO

Chikungunya virus (CHIKV) is considered a priority pathogen and a major threat to global health. While CHIKV infections may be asymptomatic, symptomatic patients can develop chikungunya fever (CHIKF) characterized by severe arthralgia which often transitions into incapacitating arthritis that could last for years and lead to significant loss in health-related quality of life. Yet, Chikungunya fever (CHIKF) remains a neglected tropical disease due to its complex epidemiology and the misrepresentation of its incidence and disease burden worldwide. Transmitted to humans by infected Aedes mosquitoes, CHIKV has dramatically expanded its geographic distribution to over 100 countries, causing large-scale outbreaks around the world and putting more than half of the population of the world at risk of infection. More than 50 years have passed since the first CHIKV vaccine was reported to be in development. Despite this, there is no licensed vaccine or antiviral treatments against CHIKV to date. In this review, we highlight the clinical relevance of developing chikungunya vaccines by discussing the poor understanding of long-term disease burden in CHIKV endemic countries, the complexity of CHIKV epidemiological surveillance, and emphasising the impact of the global emergence of CHIKV infections. Additionally, our review focuses on the recent progress of chikungunya vaccines in development, providing insight into the most advanced vaccine candidates in the pipeline and the potential implications of their roll-out.

8.
Am J Public Health ; 113(4): 363-367, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36730873

RESUMO

A private-academic partnership built the Vaccine Equity Planner (VEP) to help decision-makers improve geographic access to COVID-19 vaccinations across the United States by identifying vaccine deserts and facilities that could fill those deserts. The VEP presented complex, updated data in an intuitive form during a rapidly changing pandemic situation. The persistence of vaccine deserts in every state as COVID-19 booster recommendations develop suggests that vaccine delivery can be improved. Underresourced public health systems benefit from tools providing real-time, accurate, actionable data. (Am J Public Health. 2023;113(4):363-367. https://doi.org/10.2105/AJPH.2022.307198).


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Saúde Pública , COVID-19/prevenção & controle , Assistência Médica , Pandemias
9.
Metab Syndr Relat Disord ; 21(2): 101-108, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36399542

RESUMO

Background: Perivascular adipose tissue (PVAT) plays an essential role in cardiovascular homeostasis. However, during obesity and diabetes, its role in vascular tone regulation is unclear. This study aimed to evaluate the function of the PVAT on aorta reactivity in the lean and cafeteria (CAF) diet-induced obese-hyperglycemic mice model. Methods: Aorta reactivity to phenylephrine, KCl, and acetylcholine was analyzed in lean (n = 6) and obese mice (n = 6). Also, nitric oxide (NO-) and cyclooxygenase participation, in the presence (n = 6) and absence (n = 6) of PVAT, were examined in the aortas. Results: After a CAF diet for 19 weeks, obese mice showed increased body weight, glucose intolerance, and hypercholesterolemia concerning lean mice. Vascular reactivity to phenylephrine was reduced significantly in the aorta of obese mice. In contrast, the contraction produced by KCl (80 mM) was increased in the aorta of obese mice independent of PVAT. Acetylcholine-induced vasorelaxation diminished in the aortas of obese mice in the presence of PVAT. Nonselective inhibition of cyclooxygenases likely shows that PVAT and endothelium release vasorelaxant prostanoids. Conclusions: The results suggest that PVAT modulates aorta reactivity by releasing NO-, decreasing the α1-adrenergic response to phenylephrine, and probably releasing vasorelaxant prostanoids. The data suggest that PVAT regulates the vascular smooth muscle and endothelial function in a CAF diet-induced obese-hyperglycemic mice model.


Assuntos
Acetilcolina , Tecido Adiposo , Camundongos , Animais , Camundongos Obesos , Acetilcolina/farmacologia , Obesidade , Aorta , Vasodilatadores , Fenilefrina/farmacologia
10.
Sensors (Basel) ; 22(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35459006

RESUMO

Crop and weed discrimination in natural field environments is still challenging for implementing automatic agricultural practices, such as weed control. Some weed control methods have been proposed. However, these methods are still restricted as they are implemented under controlled conditions. The development of a sound weed control system begins by recognizing the crop and the different weed plants presented in the field. In this work, a classification approach of Zea mays L. (Crop), narrow-leaf weeds (NLW), and broadleaf weeds (BLW) from multi-plant images are presented. Moreover, a large image dataset was generated. Images were captured in natural field conditions, in different locations, and growing stages of the plants. The extraction of regions of interest (ROI) is carried out employing connected component analysis (CCA), whereas the classification of ROIs is based on Convolutional Neural Networks (CNN) and compared with a shallow learning approach. To measure the classification performance of both methods, accuracy, precision, recall, and F1-score metrics were used. The best alternative for the weed classification task at early stages of growth and in natural corn field environments was the CNN-based approach, as indicated by the 97% accuracy value obtained.


Assuntos
Aprendizado Profundo , Zea mays , Redes Neurais de Computação , Plantas Daninhas , Controle de Plantas Daninhas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA