Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Genom ; 3(5): 100291, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37228752

RESUMO

Diverse inbred mouse strains are important biomedical research models, yet genome characterization of many strains is fundamentally lacking in comparison with humans. In particular, catalogs of structural variants (SVs) (variants ≥ 50 bp) are incomplete, limiting the discovery of causative alleles for phenotypic variation. Here, we resolve genome-wide SVs in 20 genetically distinct inbred mice with long-read sequencing. We report 413,758 site-specific SVs affecting 13% (356 Mbp) of the mouse reference assembly, including 510 previously unannotated coding variants. We substantially improve the Mus musculus transposable element (TE) callset, and we find that TEs comprise 39% of SVs and account for 75% of altered bases. We further utilize this callset to investigate how TE heterogeneity affects mouse embryonic stem cells and find multiple TE classes that influence chromatin accessibility. Our work provides a comprehensive analysis of SVs found in diverse mouse genomes and illustrates the role of TEs in epigenetic differences.

2.
Nat Commun ; 13(1): 7115, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402840

RESUMO

Transposable elements constitute about half of human genomes, and their role in generating human variation through retrotransposition is broadly studied and appreciated. Structural variants mediated by transposons, which we call transposable element-mediated rearrangements (TEMRs), are less well studied, and the mechanisms leading to their formation as well as their broader impact on human diversity are poorly understood. Here, we identify 493 unique TEMRs across the genomes of three individuals. While homology directed repair is the dominant driver of TEMRs, our sequence-resolved TEMR resource allows us to identify complex inversion breakpoints, triplications or other high copy number polymorphisms, and additional complexities. TEMRs are enriched in genic loci and can create potentially important risk alleles such as a deletion in TRIM65, a known cancer biomarker and therapeutic target. These findings expand our understanding of this important class of structural variation, the mechanisms responsible for their formation, and establish them as an important driver of human diversity.


Assuntos
Elementos de DNA Transponíveis , Genoma Humano , Humanos , Elementos de DNA Transponíveis/genética , Genoma Humano/genética , Rearranjo Gênico/genética , Variações do Número de Cópias de DNA , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética
3.
Nat Methods ; 19(10): 1230-1233, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36109679

RESUMO

Complex structural variants (CSVs) encompass multiple breakpoints and are often missed or misinterpreted. We developed SVision, a deep-learning-based multi-object-recognition framework, to automatically detect and haracterize CSVs from long-read sequencing data. SVision outperforms current callers at identifying the internal structure of complex events and has revealed 80 high-quality CSVs with 25 distinct structures from an individual genome. SVision directly detects CSVs without matching known structures, allowing sensitive detection of both common and previously uncharacterized complex rearrangements.


Assuntos
Aprendizado Profundo , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...