Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 39: 107511, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34761086

RESUMO

This article presents the raw data of silver concentration ([Ag]) obtained as a function of time (t) from silver leaching experiments, which were conducted using a synthetic sodium-silver jarosite and different complexing agents: thiosulfate, thiocyanate, and cyanide. Leaching experiments were performed under different conditions of temperature, pH and lixiviant concentration. The data refer to the article "Silver leaching from jarosite-type compounds using cyanide and non-cyanide lixiviants: a kinetic approach" (Islas et al., 2021), in which they were used to determine the leaching kinetics of jarosite-type compounds. The datasets were obtained experimentally from batch experiments. Concentration of silver, [Ag], was determined in each experiment as a function of time by atomic absorption spectroscopy. The information presented in this article can be useful for engineering students interested in mineral processing; particularly, for the calculation of kinetic parameters of silver leaching process. The data could also help in the formulation, implementation, or optimization of strategies for extraction of valuable metals from residues generated by the hydrometallurgical industry.

2.
J Hazard Mater ; 386: 121664, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31791859

RESUMO

The presence of hazardous jarosites causes a serious environmental problems, releasing potentially toxic elements, principally heavy metals such as Pb, As, Tl, Cr among others to the environment. Thus, the dissolution process of jarosites has to be monitored to assess the environmental impact. In the present work, the different hazardous jarosites were prepared, and characterized by analytical techniques (XRD, SEM, EDS, etc.), and the composition of jarosites was determined by induction-coupled plasma spectroscopy (ICP). Shrinking core kinetic model (SCKM) was employed to understand the stability of hazardous jarosites, studying a complete kinetic analysis of the jarosite dissolution process under different conditions (temperatures and pH). The results show that temperature has the highest effect on stability followed by pH, requiring extreme parameters for high dissolution. The batch experiments show that the results are in good agreement with the SCKM forming a solid layer as by-products. The chemical reaction, i.e. dissolution process performs through mostly controlling stage at extreme pH values and then moved to mass transport in the fluid layer. After analyzing the results, a kinetic equation has been proposed to describe adequately the dissolution process, and it predicts the lifetime of the hazardous jarosites.

3.
Geochem Trans ; 17: 3, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303211

RESUMO

BACKGROUND: The presence of natural and industrial jarosite type-compounds in the environment could have important implications in the mobility of potentially toxic elements such as lead, mercury, arsenic, chromium, among others. Understanding the dissolution reactions of jarosite-type compounds is notably important for an environmental assessment (for water and soil), since some of these elements could either return to the environment or work as temporary deposits of these species, thus would reduce their immediate environmental impact. RESULTS: This work reports the effects of temperature, pH, particle diameter and Cr(VI) content on the initial dissolution rates of K-Cr(VI)-jarosites (KFe3[(SO4)2 - X(CrO4)X](OH)6). Temperature (T) was the variable with the strongest effect, followed by pH in acid/alkaline medium (H3O(+)/OH(-)). It was found that the substitution of CrO4 (2-)in Y-site and the substitution of H3O(+) in M-site do not modify the dissolution rates. The model that describes the dissolution process is the unreacted core kinetic model, with the chemical reaction on the unreacted core surface. The dissolution in acid medium was congruent, while in alkaline media was incongruent. In both reaction media, there is a release of K(+), SO4 (2-) and CrO4 (2-) from the KFe3[(SO4)2 - X(CrO4)X](OH)6 structure, although the latter is rapidly absorbed by the solid residues of Fe(OH)3 in alkaline medium dissolutions. The dissolution of KFe3[(SO4)2 - X(CrO4)X](OH)6 exhibited good stability in a wide range of pH and T conditions corresponding to the calculated parameters of reaction order n, activation energy E A and dissolution rate constants for each kinetic stages of induction and progressive conversion. CONCLUSIONS: The kinetic analysis related to the reaction orders and calculated activation energies confirmed that extreme pH and T conditions are necessary to obtain considerably high dissolution rates. Extreme pH conditions (acidic or alkaline) cause the preferential release of K(+), SO4 (2-) and CrO4 (2-) from the KFe3[(SO4)2 - X(CrO4)X](OH)6 structure, although CrO4 (2-) is quickly adsorbed by Fe(OH)3 solid residues. The precipitation of phases such as KFe3[(SO4)2 - X(CrO4)X](OH)6, and the absorption of Cr(VI) after dissolution can play an important role as retention mechanisms of Cr(VI) in nature.

4.
Geochem Trans ; 14: 2, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23566061

RESUMO

The widespread use of jarosite-type compounds to eliminate impurities in the hydrometallurgical industry is due to their capability to incorporate several elements into their structures. Some of these elements are of environmental importance (Pb(2+), Cr(6+), As(5+), Cd(2+), Hg(2+)). For the present paper, AsO4 (3-) was incorporated into the lattice of synthetic jarosite in order to carry out a reactivity study. Alkaline decomposition is characterized by removal of sulfate and potassium ions from the lattice and formation of a gel consisting of iron hydroxides with absorbed arsenate. Decomposition curves show an induction period followed by a conversion period. The induction period is independent of particle size and exponentially decreases with temperature. The conversion period is characterized by formation of a hydroxide halo that surrounds an unreacted jarosite core. During the conversion period in NaOH media for [OH(-)] > 8 × 10(-3) mol L(-1), the process showed a reaction order of 1.86, and an apparent activation energy of 60.3 kJ mol(-1) was obtained. On the other hand, during the conversion period in Ca(OH)2 media for [OH(-)] > 1.90 × 10(-2) mol L(-1), the reaction order was 1.15, and an apparent activation energy of 74.4 kJ mol(-1) was obtained. The results are consistent with the spherical particle model with decreasing core and chemical control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...