Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Urology ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025236

RESUMO

OBJECTIVE: To evaluate the efficacy of the Aurie System, a preclinical prototype allowing for standardized intermittent catheter (IC) reuse of novel reusable no-touch ICs. Individuals with neurogenic bladder often require single-use ICs to urinate, but urinary tract infection (UTI) is a common cause of morbidity for IC users. Safer no-touch catheters are not easily affordable, and the Aurie System attempts to provide no-touch catheters at a fraction of the price by allowing for standardized and safe IC reuse. METHODS: Standard ICs were inoculated with E. coli and P. aeruginosa and incubated for 48 hours to assess microbial burden and biofilm formation (the latter using infrared fluorescence imaging). This procedure was repeated with Aurie ICs, focusing on evaluating catheter microbial burden after inoculation and reprocessing with the prototype washer-disinfector. This was repeated with up to 100 cycles to evaluate repetitive use. RESULTS: Standard ICs showed bacterial attachment and biofilm development peaking at 24 hours of incubation. The Aurie catheters produced a similar outcome but, after reprocessing, microbial burden was reduced below the level of detection. Repeat cycles showed pathogen clearance to similar levels. One catheter reached 100 cycles and there was no viable pathogen load after reprocessing. CONCLUSIONS: Intermittent urinary catheters, when cleaned inappropriately, can harbor viable bacteria and biofilm. The Aurie System, when used to disinfect novel reusable ICs within a prototype reprocessing device, can reduce microbial burden below level of detection even after 100 cycles. This suggests the Aurie System may be a feasible technology for safe IC reuse.

2.
Infect Immun ; : e0047623, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829045

RESUMO

Macrophages are dynamic innate immune cells that either reside in tissue, serving as sentinels, or recruited as monocytes from bone marrow into inflamed and infected tissue. In response to cues in the tissue microenvironment (TME), macrophages polarize on a continuum toward M1 or M2 with diverse roles in progression and resolution of disease. M1-like macrophages exhibit proinflammatory functions with antimicrobial and anti-tumorigenic activities, while M2-like macrophages have anti-inflammatory functions that generally resolve inflammatory responses and orchestrate a tissue healing process. Given these opposite phenotypes, proper spatiotemporal coordination of macrophage polarization in response to cues within the TME is critical to effectively resolve infectious disease and regulate wound healing. However, if this spatiotemporal coordination becomes disrupted due to persistent infection or dysregulated coagulation, macrophages' inappropriate response to these cues will result in the development of diseases with clinically unfavorable outcomes. Since plasticity and heterogeneity are hallmarks of macrophages, they are attractive targets for therapies to reprogram toward specific phenotypes that could resolve disease and favor clinical prognosis. In this review, we discuss how basic science studies have elucidated macrophage polarization mechanisms in TMEs during infections and inflammation, particularly coagulation. Therefore, understanding the dynamics of macrophage polarization within TMEs in diseases is important in further development of targeted therapies.

3.
mSphere ; 9(4): e0064223, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38511958

RESUMO

The spread of multi-drug-resistant (MDR) pathogens has rapidly outpaced the development of effective treatments. Diverse resistance mechanisms further limit the effectiveness of our best treatments, including multi-drug regimens and last line-of-defense antimicrobials. Biofilm formation is a powerful component of microbial pathogenesis, providing a scaffold for efficient colonization and shielding against anti-microbials, which further complicates drug resistance studies. Early genetic knockout tools didn't allow the study of essential genes, but clustered regularly interspaced palindromic repeat inference (CRISPRi) technologies have overcome this challenge via genetic silencing. These tools rapidly evolved to meet new demands and exploit native CRISPR systems. Modern tools range from the creation of massive CRISPRi libraries to tunable modulation of gene expression with CRISPR activation (CRISPRa). This review discusses the rapid expansion of CRISPRi/a-based technologies, their use in investigating MDR and biofilm formation, and how this drives further development of a potent tool to comprehensively examine multi-drug resistance.

4.
Nat Commun ; 15(1): 2704, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538626

RESUMO

Catheter-associated urinary tract infections (CAUTIs) are amongst the most common nosocomial infections worldwide and are difficult to treat partly due to development of multidrug-resistance from CAUTI-related pathogens. Importantly, CAUTI often leads to secondary bloodstream infections and death. A major challenge is to predict when patients will develop CAUTIs and which populations are at-risk for bloodstream infections. Catheter-induced inflammation promotes fibrinogen (Fg) and fibrin accumulation in the bladder which are exploited as a biofilm formation platform by CAUTI pathogens. Using our established mouse model of CAUTI, here we identified that host populations exhibiting either genetic or acquired fibrinolytic-deficiencies, inducing fibrin deposition in the catheterized bladder, are predisposed to severe CAUTI and septicemia by diverse uropathogens in mono- and poly-microbial infections. Furthermore, here we found that Enterococcus faecalis, a prevalent CAUTI pathogen, uses the secreted protease, SprE, to induce fibrin accumulation and create a niche ideal for growth, biofilm formation, and persistence during CAUTI.


Assuntos
Infecção Hospitalar , Sepse , Infecções Urinárias , Animais , Camundongos , Humanos , Catéteres , Enterococcus faecalis/genética , Fibrina
5.
Nat Commun ; 15(1): 61, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168042

RESUMO

Catheter-associated urinary tract infections (CAUTIs), a common cause of healthcare-associated infections, are caused by a diverse array of pathogens that are increasingly becoming antibiotic resistant. We analyze the microbial occurrences in catheter and urine samples from 55 human long-term catheterized patients collected over one year. Although most of these patients were prescribed antibiotics over several collection periods, their catheter samples remain colonized by one or more bacterial species. Examination of a total of 366 catheter and urine samples identify 13 positive and 13 negative genus co-occurrences over 12 collection periods, representing associations that occur more or less frequently than expected by chance. We find that for many patients, the microbial species composition between collection periods is similar. In a subset of patients, we find that the most frequently sampled bacteria, Escherichia coli and Enterococcus faecalis, co-localize on catheter samples. Further, co-culture of paired isolates recovered from the same patients reveals that E. coli significantly augments E. faecalis growth in an artificial urine medium, where E. faecalis monoculture grows poorly. These findings suggest novel strategies to collapse polymicrobial CAUTI in long-term catheterized patients by targeting mechanisms that promote positive co-associations.


Assuntos
Infecções Relacionadas a Cateter , Infecções Urinárias , Humanos , Escherichia coli , Infecções Relacionadas a Cateter/microbiologia , Catéteres , Infecções Urinárias/microbiologia , Enterococcus faecalis , Bactérias
6.
medRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37790393

RESUMO

Silicone urinary catheters infused with silicone liquid offer an effective alternative to antibiotic coatings, reducing microbial adhesion while decreasing bladder colonization and systemic dissemination. However, loss of free silicone liquid from the surface into the host system is undesirable. To reduce the potential for liquid loss, free silicone liquid was removed from the surface of liquid-infused catheters by either removing excess liquid from fully infused samples or by partial infusion. The effect on bacterial and host protein adhesion was then assessed. Removing the free liquid from fully infused samples resulted in a ~64% decrease in liquid loss into the environment compared to controls, with no significant increase in deposition of the host protein fibrinogen or the adhesion of the common uropathogen Enterococcus faecalis. Partially infusing samples decreased liquid loss as total liquid content decreased, with samples infused to 70-80% of their maximum capacity showing a ~85% reduction in liquid loss compared to fully infused controls. Furthermore, samples above 70% infusion showed no significant increase in fibrinogen or E. faecalis adhesion. Together, the results suggest that eliminating free liquid layer, mechanically or through partial infusion, can reduce liquid loss from liquid-infused catheters while preserving functionality.

7.
Res Sq ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37790429

RESUMO

Catheter-associated urinary tract infections (CAUTIs) are amongst the most common nosocomial infections worldwide and are difficult to treat due to multi-drug resistance development among the CAUTI-related pathogens. Importantly, CAUTI often leads to secondary bloodstream infections and death. A major challenge is to predict when patients will develop CAUTIs and which populations are at-risk for bloodstream infections. Catheter-induced inflammation promotes fibrinogen (Fg) and fibrin accumulation in the bladder which are exploited as a biofilm formation platform by CAUTI pathogens. Using our established mouse model of CAUTI, we identified that host populations exhibiting either genetic or acquired fibrinolytic-deficiencies, inducing fibrin deposition in the catheterized bladder, are predisposed to severe CAUTI and septicemia by diverse uropathogens in mono- and poly-microbial infections. Furthermore, we found that E. faecalis, a prevalent CAUTI pathogen, uses the secreted protease, SprE, to induce fibrin accumulation and create a niche ideal for growth, biofilm formation, and persistence during CAUTI.

8.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37232416

RESUMO

Cilia are essential for the ontogeny and function of many tissues, including the kidney. Here, we report that transcription factor ERRγ ortholog estrogen related receptor gamma a (Esrrγa) is essential for renal cell fate choice and ciliogenesis in zebrafish. esrrγa deficiency altered proximodistal nephron patterning, decreased the multiciliated cell populace and disrupted ciliogenesis in the nephron, Kupffer's vesicle and otic vesicle. These phenotypes were consistent with interruptions in prostaglandin signaling, and we found that ciliogenesis was rescued by PGE2 or the cyclooxygenase enzyme Ptgs1. Genetic interaction revealed that peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (Ppargc1a), which acts upstream of Ptgs1-mediated prostaglandin synthesis, has a synergistic relationship with Esrrγa in the ciliogenic pathway. These ciliopathic phenotypes were also observed in mice lacking renal epithelial cell (REC) ERRγ, where significantly shorter cilia formed on proximal and distal tubule cells. Decreased cilia length preceded cyst formation in REC-ERRγ knockout mice, suggesting that ciliary changes occur early during pathogenesis. These data position Esrrγa as a novel link between ciliogenesis and nephrogenesis through regulation of prostaglandin signaling and cooperation with Ppargc1a.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Camundongos , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Néfrons/metabolismo , Rim/metabolismo , Prostaglandinas/metabolismo , Cílios/metabolismo
9.
Sci Adv ; 9(9): eade7689, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867691

RESUMO

Catheter-associated urinary tract infections (CAUTIs) account for 40% of hospital-acquired infections (HAIs). As 20 to 50% of hospitalized patients receive catheters, CAUTIs are one of the most common HAIs, resulting in increased morbidity, mortality, and health care costs. Candida albicans is the second most common CAUTI uropathogen, yet relative to its bacterial counterparts, little is known about how fungal CAUTIs are established. Here, we show that the catheterized bladder environment induces Efg1- and fibrinogen (Fg)-dependent biofilm formation that results in CAUTI. In addition, we identify the adhesin Als1 as the critical fungal factor for C. albicans Fg-urine biofilm formation. Furthermore, we show that in the catheterized bladder, a dynamic and open system, both filamentation and attachment are required, but each by themselves are not sufficient for infection. Our study unveils the mechanisms required for fungal CAUTI establishment, which may aid in the development of future therapies to prevent these infections.


Assuntos
Esclerose Lateral Amiotrófica , Infecção Hospitalar , Humanos , Candida albicans , Bexiga Urinária , Adesinas Bacterianas , Fibrinogênio
10.
G3 (Bethesda) ; 13(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36450451

RESUMO

For the fungal pathogen Candida albicans, genetic overexpression readily occurs via a diversity of genomic alterations, such as aneuploidy and gain-of-function mutations, with important consequences for host adaptation, virulence, and evolution of antifungal drug resistance. Given the important role of overexpression on C. albicans biology, it is critical to develop and harness tools that enable the analysis of genes expressed at high levels in the fungal cell. Here, we describe the development, optimization, and application of a novel, single-plasmid-based CRISPR activation (CRISPRa) platform for targeted genetic overexpression in C. albicans, which employs a guide RNA to target an activator complex to the promoter region of a gene of interest, thus driving transcriptional expression of that gene. Using this system, we demonstrate the ability of CRISPRa to drive high levels of gene expression in C. albicans, and we assess optimal guide RNA targeting for robust and constitutive overexpression. We further demonstrate the specificity of the system via RNA sequencing. We highlight the application of CRISPR activation to overexpress genes involved in pathogenesis and drug susceptibility, and contribute toward the identification of novel phenotypes. Consequently, this tool will facilitate a broad range of applications for the study of C. albicans genetic overexpression.


Assuntos
Candida albicans , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Candida albicans/genética , Candida albicans/metabolismo , Farmacorresistência Fúngica/genética , Sequência de Bases , RNA/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(43): e2210912119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252016

RESUMO

The alarming rise of multidrug-resistant Gram-positive bacteria has precipitated a healthcare crisis, necessitating the development of new antimicrobial therapies. Here we describe a new class of antibiotics based on a ring-fused 2-pyridone backbone, which are active against vancomycin-resistant enterococci (VRE), a serious threat as classified by the Centers for Disease Control and Prevention, and other multidrug-resistant Gram-positive bacteria. Ring-fused 2-pyridone antibiotics have bacteriostatic activity against actively dividing exponential phase enterococcal cells and bactericidal activity against nondividing stationary phase enterococcal cells. The molecular mechanism of drug-induced killing of stationary phase cells mimics aspects of fratricide observed in enterococcal biofilms, where both are mediated by the Atn autolysin and the GelE protease. In addition, combinations of sublethal concentrations of ring-fused 2-pyridones and standard-of-care antibiotics, such as vancomycin, were found to synergize to kill clinical strains of VRE. Furthermore, a broad range of antibiotic resistant Gram-positive pathogens, including those responsible for the increasing incidence of antibiotic resistant healthcare-associated infections, are susceptible to this new class of 2-pyridone antibiotics. Given the broad antibacterial activities of ring-fused 2-pyridone compounds against Gram-positive (GmP) bacteria we term these compounds GmPcides, which hold promise in combating the rising tide of antibiotic resistant Gram-positive pathogens.


Assuntos
Bactérias Gram-Positivas , Piridonas , Enterococos Resistentes à Vancomicina , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , N-Acetil-Muramil-L-Alanina Amidase/farmacologia , Piridonas/farmacologia , Vancomicina/farmacologia , Enterococos Resistentes à Vancomicina/efeitos dos fármacos
12.
Virulence ; 13(1): 592-608, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35341449

RESUMO

Bacterial pathogens require a variety of micronutrients for growth, including trace metals such as iron, manganese, and zinc (Zn). Despite their relative abundance in host environments, access to these metals is severely restricted during infection due to host-mediated defense mechanisms collectively known as nutritional immunity. Despite a growing appreciation of the importance of Zn in host-pathogen interactions, the mechanisms of Zn homeostasis and the significance of Zn to the pathophysiology of E. faecalis, a major pathogen of nosocomial and community-associated infections, have not been thoroughly investigated. Here, we show that E. faecalis encoded ABC-type transporter AdcACB and an orphan substrate-binding lipoprotein AdcAII that work cooperatively to maintain Zn homeostasis. Simultaneous inactivation of adcA and adcAII or the entire adcACB operon led to a significant reduction in intracellular Zn under Zn-restricted conditions and heightened sensitivity to Zn-chelating agents including human calprotectin, aberrant cell morphology, and impaired fitness in serum ex vivo. Additionally, inactivation of adcACB and adcAII significantly reduced bacterial tolerance toward cell envelope-targeting antibiotics. Finally, we showed that the AdcACB/AdcAII system contributes to E. faecalis virulence in a Galleria mellonella invertebrate infection model and in two catheter-associated mouse infection models that recapitulate many of the host conditions associated with enterococcal human infections. Collectively, this report reveals that high-affinity Zn import is important for the pathogenesis of E. faecalis establishing the surface-associated AdcA and AdcAII lipoproteins as potential therapeutic targets.


Assuntos
Proteínas de Bactérias , Enterococcus faecalis , Animais , Proteínas de Bactérias/genética , Enterococcus faecalis/genética , Homeostase , Camundongos , Virulência , Zinco
13.
Elife ; 112022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35348114

RESUMO

Microbial adhesion to medical devices is common for hospital-acquired infections, particularly for urinary catheters. If not properly treated these infections cause complications and exacerbate antimicrobial resistance. Catheter use elicits bladder inflammation, releasing host serum proteins, including fibrinogen (Fg), into the bladder, which deposit on the urinary catheter. Enterococcus faecalis uses Fg as a scaffold to bind and persist in the bladder despite antibiotic treatments. Inhibition of Fg-pathogen interaction significantly reduces infection. Here, we show deposited Fg is advantageous for uropathogens E. faecalis, Escherichia coli, Pseudomonas aeruginosa, K. pneumoniae, A. baumannii, and C. albicans, suggesting that targeting catheter protein deposition may reduce colonization creating an effective intervention for catheter-associated urinary tract infections (CAUTIs). In a mouse model of CAUTI, host-protein deposition was reduced, using liquid-infused silicone catheters, resulting in decreased colonization on catheters, in bladders, and dissemination in vivo. Furthermore, proteomics revealed a significant decrease in deposition of host-secreted proteins on liquid-infused catheter surfaces. Our findings suggest targeting microbial-binding scaffolds may be an effective antibiotic-sparing intervention for use against CAUTIs and other medical device infections.


Assuntos
Infecções Relacionadas a Cateter , Infecções Urinárias , Animais , Antibacterianos/farmacologia , Candida albicans , Infecções Relacionadas a Cateter/complicações , Infecções Relacionadas a Cateter/prevenção & controle , Enterococcus faecalis , Escherichia coli , Klebsiella pneumoniae , Camundongos , Cateteres Urinários/efeitos adversos , Infecções Urinárias/prevenção & controle
14.
Infect Immun ; 89(11): e0036521, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34424750

RESUMO

Second messenger nucleotides are produced by bacteria in response to environmental stimuli and play a major role in the regulation of processes associated with bacterial fitness, including but not limited to osmoregulation, envelope homeostasis, central metabolism, and biofilm formation. In this study, we uncovered the biological significance of c-di-AMP in the opportunistic pathogen Enterococcus faecalis by isolating and characterizing strains lacking genes responsible for c-di-AMP synthesis (cdaA) and degradation (dhhP and gdpP). Using complementary approaches, we demonstrated that either complete loss of c-di-AMP (ΔcdaA strain) or c-di-AMP accumulation (ΔdhhP, ΔgdpP, and ΔdhhP ΔgdpP strains) drastically impaired general cell fitness and virulence of E. faecalis. In particular, the ΔcdaA strain was highly sensitive to envelope-targeting antibiotics, was unable to multiply and quickly lost viability in human serum or urine ex vivo, and was virtually avirulent in an invertebrate (Galleria mellonella) and in two catheter-associated mouse infection models that recapitulate key aspects of enterococcal infections in humans. In addition to evidence linking these phenotypes to altered activity of metabolite and peptide transporters and inability to maintain osmobalance, we found that the attenuated virulence of the ΔcdaA strain also could be attributed to a defect in Ebp pilus production and activity that severely impaired biofilm formation under both in vitro and in vivo conditions. Collectively, these results demonstrate that c-di-AMP signaling is essential for E. faecalis pathogenesis and a desirable target for drug development.


Assuntos
Fosfatos de Dinucleosídeos/fisiologia , Enterococcus faecalis/patogenicidade , Animais , Biofilmes , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Fímbrias Bacterianas/fisiologia , Regulação Bacteriana da Expressão Gênica , Infecções por Bactérias Gram-Positivas/etiologia , Humanos , Virulência
15.
Front Cardiovasc Med ; 8: 667554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179133

RESUMO

Invasive outcomes of Group A Streptococcus (GAS) infections that involve damage to skin and other tissues are initiated when these bacteria colonize and disseminate via an open wound to gain access to blood and deeper tissues. Two critical GAS virulence factors, Plasminogen-Associated M-Protein (PAM) and streptokinase (SK), work in concert to bind and activate host human plasminogen (hPg) in order to create a localized proteolytic environment that alters wound-site architecture. Using a wound scratch assay with immortalized epithelial cells, real-time live imaging (RTLI) was used to examine dynamic effects of hPg activation by a PAM-containing skin-trophic GAS isolate (AP53R+S-) during the course of infection. RTLI of these wound models revealed that retraction of the epithelial wound required both GAS and hPg. Isogenic AP53R+S- mutants lacking SK or PAM highly attenuated the time course of retraction of the keratinocyte wound. We also found that relocalization of integrin ß1 from the membrane to the cytoplasm occurred during the wound retraction event. We devised a combined in situ-based cellular model of fibrin clot-in epithelial wound to visualize the progress of GAS pathogenesis by RTLI. Our findings showed GAS AP53R+S- hierarchically dissolved the fibrin clot prior to the retraction of keratinocyte monolayers at the leading edge of the wound. Overall, our studies reveal that localized activation of hPg by AP53R+S- via SK and PAM during infection plays a critical role in dissemination of bacteria at the wound site through both rapid dissolution of the fibrin clot and retraction of the keratinocyte wound layer.

16.
Cell Rep ; 33(6): 108370, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33176142

RESUMO

Cilia are microtubule-based organelles that function in a multitude of physiological contexts to perform chemosensing, mechanosensing, and fluid propulsion. The process of ciliogenesis is highly regulated, and disruptions result in disease states termed ciliopathies. Here, we report that peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (ppargc1a) is essential for ciliogenesis in nodal, mono-, and multiciliated cells (MCCs) and for discernment of renal tubule ciliated cell fate during embryogenesis. ppargc1a performs these functions by affecting prostaglandin signaling, whereby cilia formation and renal MCC fate are restored with prostaglandin E2 (PGE2) treatment in ppargc1a-deficient animals. Genetic disruption of ppargc1a specifically reduces expression of the prostanoid biosynthesis gene prostaglandin-endoperoxide synthase 1 (ptgs1), and suboptimal knockdown of both genes shows this synergistic effect. Furthermore, ptgs1 overexpression rescues ciliogenesis and renal MCCs in ppargc1a-deficient embryos. These findings position Ppargc1a as a key genetic regulator of prostaglandin signaling during ciliated cell ontogeny.


Assuntos
Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Prostaglandinas/metabolismo , Animais , Diferenciação Celular/fisiologia , Transdução de Sinais , Peixe-Zebra
17.
Pathogens ; 9(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066191

RESUMO

Indwelling urinary catheters are common in health care settings and can lead to catheter-associated urinary tract infection (CAUTI). Long-term catheterization causes polymicrobial colonization of the catheter and urine, for which the clinical significance is poorly understood. Through prospective assessment of catheter urine colonization, we identified Enterococcus faecalis and Proteus mirabilis as the most prevalent and persistent co-colonizers. Clinical isolates of both species successfully co-colonized in a murine model of CAUTI, and they were observed to co-localize on catheter biofilms during infection. We further demonstrate that P. mirabilis preferentially adheres to E. faecalis during biofilm formation, and that contact-dependent interactions between E. faecalis and P. mirabilis facilitate establishment of a robust biofilm architecture that enhances antimicrobial resistance for both species. E. faecalis may therefore act as a pioneer species on urinary catheters, establishing an ideal surface for persistent colonization by more traditional pathogens such as P. mirabilis.

18.
Front Immunol ; 11: 215, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117322

RESUMO

Bacillus endophthalmitis is a severe intraocular infection. Hallmarks of Bacillus endophthalmitis include robust inflammation and rapid loss of vision. We reported that the absence of Bacillus surface layer protein (SLP) significantly blunted endophthalmitis severity. Here, we further investigated SLP in the context of Bacillus-retinal cell interactions and innate immune pathways to explore the mechanisms by which SLP contributes to intraocular inflammation. We compared phenotypes of Wild-type (WT) and SLP deficient (ΔslpA) Bacillus thuringiensis by analyzing bacterial adherence to and phagocytosis by human retinal Muller cells and phagocytosis by mouse neutrophils. Innate immune receptor activation by the Bacillus envelope and purified SLP was analyzed using TLR2/4 reporter cell lines. A synthetic TLR2/4 inhibitor was used as a control for this receptor activation. To induce endophthalmitis, mouse eyes were injected intravitreally with 100 CFU WT or ΔslpA B. thuringiensis. A group of WT infected mice was treated intravitreally with a TLR2/4 inhibitor at 4 h postinfection. At 10 h postinfection, infected eyes were analyzed for viable bacteria, inflammation, and retinal function. We observed that B. thuringiensis SLPs contributed to retinal Muller cell adherence, and protected this pathogen from Muller cell- and neutrophil-mediated phagocytosis. We found that B. thuringiensis envelope activated TLR2 and, surprisingly, TLR4, suggesting the presence of a surface-associated TLR4 agonist in Bacillus. Further investigation showed that purified SLP from B. thuringiensis activated TLR4, as well as TLR2 in vitro. Growth of WT B. thuringiensis was significantly higher and caused greater inflammation in untreated eyes than in eyes treated with the TLR2/4 inhibitor. Retinal function analysis also showed greater retention of A-wave and B-wave function in infected eyes treated with the TLR2/4 inhibitor. The TLR2/4 inhibitor was not antibacterial in vitro, and did not cause inflammation when injected into uninfected eyes. Taken together, these results suggest a potential role for Bacillus SLP in host-bacterial interactions, as well as in endophthalmitis pathogenesis via TLR2- and TLR4-mediated pathways.


Assuntos
Bacillus thuringiensis/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Endoftalmite/imunologia , Infecções por Bactérias Gram-Positivas/imunologia , Imunidade Inata/genética , Glicoproteínas de Membrana/metabolismo , Animais , Aderência Bacteriana/genética , Proteínas da Membrana Bacteriana Externa/genética , Modelos Animais de Doenças , Endoftalmite/tratamento farmacológico , Células Ependimogliais/metabolismo , Infecções por Bactérias Gram-Positivas/microbiologia , Células HL-60 , Humanos , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Fagocitose/genética , Fosfatidilcolinas/farmacologia , Fosfatidilcolinas/uso terapêutico , Células Fotorreceptoras de Vertebrados/metabolismo , Epitélio Pigmentado da Retina/citologia , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo
19.
J Bacteriol ; 202(10)2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32123038

RESUMO

Streptococcus pyogenes (Lancefield group A Streptococcus [GAS]) is a ß-hemolytic human-selective pathogen that is responsible for a large number of morbid and mortal infections in humans. For efficient infection, GAS requires different types of surface proteins that provide various mechanisms for evading human innate immune responses, thus enhancing pathogenicity of the bacteria. Many such virulence-promoting proteins, including the major surface signature M protein, are translocated after biosynthesis through the cytoplasmic membrane and temporarily tethered to this membrane via a type 1 transmembrane domain (TMD) positioned near the COOH terminus. In these proteins, a sorting signal, LPXTG, is positioned immediately upstream of the TMD, which is cleaved by the membrane-associated transpeptidase, sortase A (SrtA), leading to the covalent anchoring of these proteins to newly emerging l-Ala-l-Ala cross-bridges of the growing peptidoglycan cell wall. Herein, we show that inactivation of the srtA gene in a skin-tropic pattern D GAS strain (AP53) results in retention of the M protein in the cell membrane. However, while the isogenic AP53 ΔsrtA strain is attenuated in overall pathogenic properties due to effects on the integrity of the cell membrane, our data show that the M protein nonetheless can extend from the cytoplasmic membrane through the cell wall and then to the surface of the bacteria and thereby retain its important properties of productively binding and activating fluid-phase host plasminogen (hPg). The studies presented herein demonstrate an underappreciated additional mechanism of cell surface display of bacterial virulence proteins via their retention in the cell membrane and extension to the GAS surface.IMPORTANCE Group A Streptococcus pyogenes (GAS) is a human-specific pathogen that produces many surface factors, including its signature M protein, that contribute to its pathogenicity. M proteins undergo specific membrane localization and anchoring to the cell wall via the transpeptidase sortase A. Herein, we explored the role of sortase A function on M protein localization, architecture, and function, employing, a skin-tropic GAS isolate, AP53, which expresses a human plasminogen (hPg)-binding M (PAM) Protein. We showed that PAM anchored in the cell membrane, due to the targeted inactivation of sortase A, was nonetheless exposed on the cell surface and functionally interacted with host hPg. We demonstrate that M proteins, and possibly other sortase A-processed proteins that are retained in the cell membrane, can still function to initiate pathogenic processes by this underappreciated mechanism.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Plasminogênio/metabolismo , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/metabolismo , Aminoaciltransferases/genética , Proteínas de Bactérias/genética , Cisteína Endopeptidases/genética , Humanos , Proteínas de Membrana/genética , Ligação Proteica , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética
20.
World J Urol ; 38(9): 2237-2245, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31792577

RESUMO

PURPOSE: Catheter-associated urinary tract infections (CAUTIs) are a significant cause of morbidity worldwide, as they account for 40% of all hospital-associated infections. Microbial biofilm formation on urinary catheters (UCs) limits antibiotic efficacy, making CAUTI extremely difficult to treat. To gain insight into the spatiotemporal microbe interactions on the catheter surface we sought to determine how the presence or absence of bacteriuria prior to catheterization affects the organism that ultimately forms a biofilm on the UC and how long after catheterization they emerge. METHODS: Thirty UCs were collected from patients who received a urine culture prior to catheterization, a UC, and antibiotics as part of standard of care. Immunofluorescence imaging and scanning electron microscopy were used to visualize patient UCs. RESULTS: Most patients did not have bacteria in their urine (based on standard urinalysis) prior to catheterization, yet microbes were detected on the majority of UCs, even with dwell times of < 3 days. The most frequently identified microbes were Staphylococcus epidermidis, Enterococcus faecalis, and Escherichia coli. CONCLUSIONS: This study indicates that despite patients having negative urine cultures and receiving antibiotics prior to catheter placement, microbes, including uropathogens associated with causing CAUTI, could be readily detected on UCs with short dwell times. This suggests that a potential microbial catheter reservoir can form soon after placement, even in the presence of antibiotics, which may serve to facilitate the development of CAUTI. Thus, removing and/or replacing UCs as soon as possible is of critical importance to reduce the risk of developing CAUTI.


Assuntos
Antibacterianos/farmacologia , Bactérias/isolamento & purificação , Bacteriúria/microbiologia , Biofilmes/efeitos dos fármacos , Contaminação de Equipamentos , Cateteres Urinários/microbiologia , Antibacterianos/uso terapêutico , Feminino , Imunofluorescência , Humanos , Masculino , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...