Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; : e0047623, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829045

RESUMO

Macrophages are dynamic innate immune cells that either reside in tissue, serving as sentinels, or recruited as monocytes from bone marrow into inflamed and infected tissue. In response to cues in the tissue microenvironment (TME), macrophages polarize on a continuum toward M1 or M2 with diverse roles in progression and resolution of disease. M1-like macrophages exhibit proinflammatory functions with antimicrobial and anti-tumorigenic activities, while M2-like macrophages have anti-inflammatory functions that generally resolve inflammatory responses and orchestrate a tissue healing process. Given these opposite phenotypes, proper spatiotemporal coordination of macrophage polarization in response to cues within the TME is critical to effectively resolve infectious disease and regulate wound healing. However, if this spatiotemporal coordination becomes disrupted due to persistent infection or dysregulated coagulation, macrophages' inappropriate response to these cues will result in the development of diseases with clinically unfavorable outcomes. Since plasticity and heterogeneity are hallmarks of macrophages, they are attractive targets for therapies to reprogram toward specific phenotypes that could resolve disease and favor clinical prognosis. In this review, we discuss how basic science studies have elucidated macrophage polarization mechanisms in TMEs during infections and inflammation, particularly coagulation. Therefore, understanding the dynamics of macrophage polarization within TMEs in diseases is important in further development of targeted therapies.

2.
medRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37790393

RESUMO

Silicone urinary catheters infused with silicone liquid offer an effective alternative to antibiotic coatings, reducing microbial adhesion while decreasing bladder colonization and systemic dissemination. However, loss of free silicone liquid from the surface into the host system is undesirable. To reduce the potential for liquid loss, free silicone liquid was removed from the surface of liquid-infused catheters by either removing excess liquid from fully infused samples or by partial infusion. The effect on bacterial and host protein adhesion was then assessed. Removing the free liquid from fully infused samples resulted in a ~64% decrease in liquid loss into the environment compared to controls, with no significant increase in deposition of the host protein fibrinogen or the adhesion of the common uropathogen Enterococcus faecalis. Partially infusing samples decreased liquid loss as total liquid content decreased, with samples infused to 70-80% of their maximum capacity showing a ~85% reduction in liquid loss compared to fully infused controls. Furthermore, samples above 70% infusion showed no significant increase in fibrinogen or E. faecalis adhesion. Together, the results suggest that eliminating free liquid layer, mechanically or through partial infusion, can reduce liquid loss from liquid-infused catheters while preserving functionality.

3.
Sci Adv ; 9(9): eade7689, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867691

RESUMO

Catheter-associated urinary tract infections (CAUTIs) account for 40% of hospital-acquired infections (HAIs). As 20 to 50% of hospitalized patients receive catheters, CAUTIs are one of the most common HAIs, resulting in increased morbidity, mortality, and health care costs. Candida albicans is the second most common CAUTI uropathogen, yet relative to its bacterial counterparts, little is known about how fungal CAUTIs are established. Here, we show that the catheterized bladder environment induces Efg1- and fibrinogen (Fg)-dependent biofilm formation that results in CAUTI. In addition, we identify the adhesin Als1 as the critical fungal factor for C. albicans Fg-urine biofilm formation. Furthermore, we show that in the catheterized bladder, a dynamic and open system, both filamentation and attachment are required, but each by themselves are not sufficient for infection. Our study unveils the mechanisms required for fungal CAUTI establishment, which may aid in the development of future therapies to prevent these infections.


Assuntos
Esclerose Lateral Amiotrófica , Infecção Hospitalar , Humanos , Candida albicans , Bexiga Urinária , Adesinas Bacterianas , Fibrinogênio
4.
Artigo em Inglês | MEDLINE | ID: mdl-30782996

RESUMO

The antimicrobial triclosan is used in a wide range of consumer products ranging from toothpaste, cleansers, socks, and baby toys. A bacteriostatic inhibitor of fatty acid synthesis, triclosan is extremely stable and accumulates in the environment. Approximately 75% of adults in the United States have detectable levels of the compound in their urine, with a sizeable fraction of individuals (>10%) having urine concentrations equal to or greater than the minimal inhibitory concentration for Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). Previous work has identified connections between defects in fatty acid synthesis and accumulation of the alarmone guanosine tetraphosphate (ppGpp), which has been repeatedly associated with antibiotic tolerance and persistence. Based on these data, we hypothesized that triclosan exposure may inadvertently drive bacteria into a state in which they are able to tolerate normally lethal concentrations of antibiotics. Here we report that clinically relevant concentrations of triclosan increased E. coli and MRSA tolerance to bactericidal antibiotics as much as 10,000-fold in vitro and reduced antibiotic efficacy up to 100-fold in a mouse urinary tract infection model. Genetic analysis indicated that triclosan-mediated antibiotic tolerance requires ppGpp synthesis but is independent of growth. These data highlight an unexpected and certainly unintended consequence of adding high concentrations of antimicrobials in consumer products, supporting an urgent need to reevaluate the costs and benefits of the prophylactic use of triclosan and other bacteriostatic compounds.


Assuntos
Anti-Infecciosos/uso terapêutico , Triclosan/uso terapêutico , Animais , Anti-Infecciosos/economia , Anti-Infecciosos/farmacocinética , Guanosina Tetrafosfato/metabolismo , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Testes de Sensibilidade Microbiana , Triclosan/economia , Triclosan/farmacocinética , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/metabolismo
5.
ACS Chem Biol ; 13(6): 1610-1620, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712426

RESUMO

Recent studies of hydrogen sulfide (H2S) signaling implicate low molecular weight (LMW) thiol persulfides and other reactive sulfur species (RSS) as signaling effectors. Here, we show that a CstR protein from the human pathogen Enterococcus faecalis ( E. faecalis), previously identified in Staphylococcus aureus ( S. aureus), is an RSS-sensing repressor that transcriptionally regulates a cst-like operon in response to both exogenous sulfide stress and Angeli's salt, a precursor of nitroxyl (HNO). E. faecalis CstR reacts with coenzyme A persulfide (CoASSH) to form interprotomer disulfide and trisulfide bridges between C32 and C61', which negatively regulate DNA binding to a consensus CstR DNA operator. A Δ cstR strain exhibits deficiency in catheter colonization in a catheter-associated urinary tract infection (CAUTI) mouse model, suggesting sulfide regulation and homeostasis is critical for pathogenicity. Cellular polysulfide metabolite profiling of sodium sulfide-stressed E. faecalis confirms an increase in both inorganic polysulfides and LMW thiols and persulfides sensed by CstR. The cst-like operon encodes two authentic thiosulfate sulfurtransferases and an enzyme we characterize here as an NADH and FAD-dependent coenzyme A (CoA) persulfide reductase (CoAPR) that harbors an N-terminal CoA disulfide reductase (CDR) domain and a C-terminal rhodanese homology domain (RHD). Both cysteines in the CDR (C42) and RHD (C508) domains are required for CoAPR activity and complementation of a sulfide-induced growth phenotype of a S. aureus strain lacking cstB, encoding a nonheme FeII persulfide dioxygenase. We propose that S. aureus CstB and E. faecalis CoAPR employ orthogonal chemistries to lower CoASSH that accumulates under conditions of cellular sulfide toxicity and signaling.


Assuntos
Proteínas de Bactérias/fisiologia , Sulfeto de Hidrogênio/metabolismo , Óxidos de Nitrogênio/metabolismo , Proteínas Repressoras/fisiologia , Sulfetos/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Coenzima A/química , Coenzima A/metabolismo , Cisteína/química , Enterococcus faecalis/genética , Feminino , Camundongos Endogâmicos C57BL , Nitritos/metabolismo , Óperon , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/fisiologia , Proteínas Repressoras/química , Proteínas Repressoras/genética , Sulfurtransferases/genética , Sulfurtransferases/fisiologia , Infecções Urinárias/fisiopatologia
6.
Mol Microbiol ; 84(5): 845-56, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22486934

RESUMO

Agrobacterium tumefaciens incites plant tumours that produce nutrients called opines, which are utilized by the bacteria during host colonization. Various opines provide sources of carbon, nitrogen and phosphorous, but virtually nothing was previously known about how A. tumefaciens acquires sulphur during colonization. Some strains encode an operon required for the catabolism of the opine octopine. This operon contains a gene, msh, that is predicted to direct the conversion of S-methylmethionine (SMM) and homocysteine (HCys) to two equivalents of methionine. Purified Msh carried out this reaction, suggesting that SMM could be an intermediate in opine catabolism. Purified octopine synthase (Ocs, normally expressed in plant tumours) utilized SMM and pyruvate to produce a novel opine, designated sulfonopine, whose catabolism by the bacteria would regenerate SMM. Sulfonopine was produced by tobacco and Arabidopsis when colonized by A. tumefaciens and was utilized as sole source of sulphur by A. tumefaciens. Purified Ocs also used 13 other proteogenic and non-proteogenic amino acids as substrates, including three that contain sulphur. Sulfonopine and 11 other opines were tested for induction of octopine catabolic operon and all were able to do so. This is the first study of the acquisition of sulphur, an essential element, by this pathogen.


Assuntos
Agrobacterium tumefaciens/metabolismo , Aminoácido Oxirredutases/metabolismo , Arginina/análogos & derivados , Enxofre/metabolismo , Vitamina U/metabolismo , Arabidopsis/metabolismo , Arginina/metabolismo , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...