Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38948936

RESUMO

Positronium (Ps) exhibits the ability to form energetically stable complexes with atoms and molecules before annihilation occurs. In particular, F, a halogen, shows the highest reported positronium binding energy (2.95 eV) in the periodic table. Superhalogens are defined as molecules with electron affinities exceeding that of Cl (3.61 eV), the atom with the highest electron affinity. Building upon the concept of superhalogens, we can define Ps-superhalogens as molecules with Ps binding energies surpassing that of F. This study explores structural and energetic aspects of positronium and positron binding to neutral and anionic superhalogen molecules of the MXk+1 family (M = Li, Na, Be, Mg, B, Al, Si, P; X = F, Cl, Br), respectively and where k represents the highest formal valence of M. We perform multicomponent MP2 calculations for positron systems, which reveal how positron affinities vary with the type and number of halogen atoms present. The analysis of the results emphasizes the predominant role of electrostatic interactions in determining the positron affinity, with negligible effects of electronic and geometric relaxation upon positron attachment. We predict the energetic stability of 22 of the 24 PsMXk+1 complexes with respect to the chemically relevant dissociation channels: e+ emission, Ps emission and M-X bond breaking. Our findings reveal six MFk+1 systems that qualify as Ps-superhalogens, showing a positronium binding energy exceeding 2.95 eV. Of these, AlF4 stands out by setting a new record for the highest positronium binding energy among neutral molecules, reaching 4.36 eV.

2.
Phys Chem Chem Phys ; 25(44): 30477-30487, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37921407

RESUMO

This article deals with the issue of perforating point defects (pores) in a bilayer heterostructure composed of striped borophene and graphene. Three types of non-equivalent vacancies of the minimum size are considered. These include a single vacancy and two double vacancies. The study of the properties and stability of the perforating defects in borophene-graphene heterostructures is important given the increasing role of such structures in membranes for water purification, renewable energy generation, and other osmotic applications. Using the DFT method, the atomic configurations and main energy characteristics of the proposed defects are obtained. The results show that the formation of a single boron vacancy on the borophene side of borophene-graphene requires less energy than the formation of a carbon vacancy in graphene. Comparisons between double vacancies in nanoscale materials are unreliable because different reference systems produce the different chemical potentials. The problem of choosing the reference system for reliable calculation of the vacancy formation energies is posed and discussed. Using borophene-graphene as an example, it is shown that the reference system strongly affects the magnitude and sign of the vacancy formation energy. Hydrogenation is tested to stabilize the proposed defects.

3.
J Phys Chem A ; 127(39): 8228-8237, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37751600

RESUMO

Analytic Fukui functions calculated at a first-principles level are combined with experimental pKa values and the calculation of tautomerization energies to obtain the effective regioselectivity of uric acid toward electron-transfer reactions under different pH conditions. Second-order electron binding energies are also computed to determine which of the tautomers is more likely to participate in the electron transfer. A comparison of vertical and adiabatic proton detachment energies allows us to conclude that tautomerization is not mediating deprotonation and that two monoanionic species are of comparable relevance. The main difference between these monoanionic species is the ring that has been deprotonated. Both monoanionic species are produced from a single neutral tautomer and mainly produce a single dianionic tautomer. As a method for the analysis of systems affected by pH such as uric acid, we propose to plot condensed Fukui functions versus pH, allowing us to draw the effect of pH on the regioselectivity of electron transfer in a single image.

4.
Phys Chem Chem Phys ; 25(13): 9656-9668, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36943209

RESUMO

DFT calculations were performed to study the effect on energetic and magnetic stability when clusters with up to 24 lithium atoms were doped with one and two atoms of yttrium. In this, the effect of the charge was considered. As a result, some stable structures were identified as possible magnetic superatoms, among them, the YLi12+ cluster with an icosahedron geometry with a spin magnetic moment of 4 bohr magnetons. The participation of yttrium in the electron density of the unpaired electrons providing magnetism in clusters was corroborated at the level of a density of states (DOS) calculation and a spin density calculation. In particular, in the Y2Li12+ superatom, it was found that the encapsulated yttrium atom participates with 35.02% and the second yttrium atom with 15.04%. These percentages, with a contribution from p orbitals, but to a greater extent by d orbitals. The complementation to these percentages is due to the participation of the s and p orbitals of the lithium atoms. In general, doping with a second yttrium atom allowed to obtain a greater amount of high magnetic moments, and considering charged clusters allowed to obtain also high magnetic moments.

5.
Inorg Chem ; 62(9): 3738-3760, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36808900

RESUMO

A new methodology based on an adaptive grid algorithm followed by an analysis of the ground state from the fit parameters is presented to analyze and interpret experimental XAS L2,3-edge data. The fitting method is tested first in a series of multiplet calculations for d0-d7 systems and for which the solution is known. In most cases, the algorithm is able to find the solution, except for a mixed-spin Co2+ Oh complex, where it instead revealed a correlation between the crystal field and the electron repulsion parameters near spin-crossover transition points. Furthermore, the results for the fitting of previously published experimental data sets on CaO, CaF2, MnO, LiMnO2, and Mn2O3 are presented and their solution discussed. The presented methodology has allowed the evaluation of the Jahn-Teller distortion in LiMnO2, which is consistent with the observed implications in the development of batteries, which use this material. Moreover, a follow-up analysis of the ground state in Mn2O3 has demonstrated an unusual ground state for the highly distorted site which would be impossible to optimize in a perfect octahedral environment. Ultimately, the presented methodology can be used in the analysis of X-ray absorption spectroscopy data measured at the L2,3-edge for a large number of materials and molecular complexes of first-row transition metals and can be expanded to the analysis of other X-ray spectroscopic data in future studies.

6.
Sci Rep ; 12(1): 20292, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434033

RESUMO

Dopamine (DA) is one of the chief neurotransmitters present in the central nervous system of mammals. Therefore detection of DA in presence of various analytes like paracetamol has great importance. In the current work, we are proposing that Triton X-100 (TX-100) pretreated carbon paste electrode (CPE) can be useful to detect the DA selectively in presence of PA. After the pretreatment CPE can detect DA in presence of PA effectively. Cyclic voltammetry was employed to observe the amplified electron transfer reaction between the modified CPE and DA. To understand electron transfer regioselectivity at the TX-100 pretreated CPE, a dual descriptor was used. The prepared electrode showed satisfactory stability when kept under ambient conditions. The proposed approach also showed excellent analytical applicability to identify DA and PA in commercial formulations. The scope of the work is limited to detecting DA in presence of PA. We will consider the other interferes for future works.


Assuntos
Carbono , Dopamina , Acetaminofen , Octoxinol , Eletrodos
7.
Materials (Basel) ; 15(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36143660

RESUMO

Amino acid-modified carbon interfaces have huge applications in developing electrochemical sensing applications. Earlier reports suggested that the amine group of amino acids acted as an oxidation center at the amino acid-modified electrode interface. It was interesting to locate the oxidation centers of amino acids in the presence of guanidine. In the present work, we modeled the arginine-modified carbon interface and utilized frontier molecular orbitals and analytical Fukui functions based on the first principle study computations to analyze arginine-modified CPE (AMCPE) at a molecular level. The frontier molecular orbital and analytical Fukui results suggest that the guanidine (oxidation) and carboxylic acid (reduction) groups of arginine act as additional electron transfer sites on the AMCPE surface. To support the theoretical observations, we prepared the arginine-modified CPE (AMCPE) for the cyclic voltammetric sensing of dopamine (DA). The AMCPE showed excellent performance in detecting DA in blood serum samples.

8.
Materials (Basel) ; 15(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36013918

RESUMO

Neurotransmitters (NTs) with hydroxyl groups can now be identified electrochemically, utilizing a variety of electrodes and voltammetric techniques. In particular, in monoamine, the position of the hydroxyl groups might alter the sensing properties of a certain neurotransmitter. Numerous research studies using electrodes modified on their surfaces to better detect specific neurotransmitters when other interfering factors are present are reviewed to improve the precision of these measures. An investigation of the monoamine neurotransmitters at nanoscale using electrochemical methods is the primary goal of this review article. It will be used to determine which sort of electrode is ideal for this purpose. The use of carbon materials, such as graphite carbon fiber, carbon fiber micro-electrodes, glassy carbon, and 3D printed electrodes are only some of the electrodes with surface modifications that can be utilized for this purpose. Electrochemical methods for real-time detection and quantification of monoamine neurotransmitters in real samples at the nanomolar level are summarized in this paper.

9.
J Mol Model ; 28(7): 197, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35729282

RESUMO

Among the most popular motivations for environmental scientists is improving materials that could be useful to fight or avoid pollution. This work shows a study of neutral and cationic cobalt clusters from 4 to 9 atoms ([Formula: see text], q = 0,1 and n = 4-9) to model their separate interaction with contaminant nitric and nitrous oxides. This study is within the framework of the density functional theory in the Kohn-Sham scheme by using BPW91 functional and 6-311G and 6-31G* basis sets to calculate global and local reactivity indexes. The effect of spin multiplicity is also determined. Results on the geometries of pure cobalt clusters agree with previously reported structures. Global minimum energy structures showed a marked preference towards the interaction of nitric and nitrous oxide molecules with cobalt clusters through chemisorptive dissociation, with the dissociation of the corresponding nitrogen oxide. Reactivity indexes reveal an even-odd alternate, which is related to electron counts. Moreover, the chemical potential is lowering after interaction with nitrogen oxides. The Fukui function illustrates the reactive zones with a high probability of chemisorption of more nitrogen oxide molecules.

10.
J Phys Chem A ; 125(48): 10463-10474, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34812636

RESUMO

Analytical calculation of alchemical derivatives based on auxiliary density perturbation theory is described, coded, and validated. For the case where the nucleus is a hydrogen atom and the nuclear charge is changed from 1 to 0, it turns out that a good estimate of the proton binding energies can be obtained very efficiently. First-order results correspond exactly to the molecular electrostatic potential evaluated at the hydrogen nucleus location (removing self-repulsion), in agreement with previously reported extensive studies. Therefore, the second-order results reported here are refinements in accuracy that finally allow a quantitative exploration of differential acidity. Furthermore, the recently reported h function is produced in its analytical form as a byproduct and local descriptor associated with the proton binding energy values found with this approach. In an example application, proton binding energies are computed for a family of imidazolium derivatives to demonstrate the capabilities and the stability of the method with respect to changes in basis set or exchange-correlation functional.

11.
J Chem Theory Comput ; 16(3): 1597-1605, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31967819

RESUMO

Computation of molecular orbital electron repulsion integrals (MO-ERIs) as a transformation from atomic orbital ERIs (AO-ERIs) is the bottleneck of second-order electron propagator calculations when a single orbital is studied. In this contribution, asymmetric density fitting is combined with modified Cholesky decomposition to generate efficiently the required MO-ERIs. The key point of the presented algorithms is to keep track of integrals through partial contractions performed on three-center AO-ERIs; these contractions are stored in RAM instead of the AO-ERIs. Two implementations are provided, an in-core, which reduces the arithmetic and memory scaling factors as compared to the four-center AO-ERIs contraction method, and a semidirect, which overcomes memory limitations by evaluating antisymmetrized MO-ERIs in batches. On the numerical side, the proposed approach is fast and stable. The bad effects due to ill conditioning, namely, several negative and close to zero eigenvalues due to machine round off errors of the matrix associated with the density fitting process, are effectively controlled by means of a modified Cholesky factorization that avoids the matrix inversion needed to perform the asymmetrical density fitting implementation. The numerical experience presented shows that the in-core implementation is highly competitive to perform calculations on medium and large basis sets, while the semidirect implementation has small variations in time by changes in the available memory. The general applicability is illustrated on a set of selected relatively large-size molecules.

12.
J Chem Phys ; 152(1): 014105, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914741

RESUMO

The working equations for the calculation of the electron paramagnetic resonance (EPR) g-tensor within the framework of the auxiliary density functional theory (ADFT) are presented. The scheme known as gauge including atomic orbitals (GIAOs) is employed to treat the gauge origin problem. This ADFT-GIAO formulation possesses an inherent high computational performance, allowing for the calculation of the EPR g-tensor of molecules containing some hundreds of atoms in reasonable computational time employing moderate computational resources. The effect of the use of a gauge independent auxiliary density on the quality of the g-tensor calculation for the evaluation of the exchange-correlation contribution is analyzed in this work. The best agreement with the experiment is obtained with the BLYP functional (Becke 1988 exchange and Lee-Yang-Parr correlation) in combination with a double-ζ basis set, in particular aug-cc-pVDZ. Furthermore, models of endohedral fullerenes N@Cn, with n = {60, 70, 100, 180, 240}, were used for benchmarking its computational performance.

13.
ACS Omega ; 3(9): 11252-11261, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459233

RESUMO

Density functional theory calculations based on magnetic and energetic stability criteria were performed to study a series of yttrium-doped lithium neutral clusters. A relativistic approximation was employed to properly describe the energy and multiplicity of the given clusters' fundamental states. The interaction of the 4d-Y atomic orbitals with the sp-Li states had an important role in the magnetic and energetic behavior of the selected systems. The spin density was concentrated over the yttrium atom regardless of the size of the cluster. Li7Y is a new stable superatom due to its enhanced magnetic properties.

14.
J Mol Model ; 23(3): 90, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28229340

RESUMO

We propose a scheme to estimate hydrogen isotope effects on molecular polarizabilities. This approach combines the any-particle molecular orbital method, in which both electrons and H/D nuclei are described as quantum waves, with the auxiliary density perturbation theory, to calculate analytically the polarizability tensor. We assess the performance of method by calculating the polarizability isotope effect for 20 molecules. A good correlation between theoretical and experimental data is found. Further analysis of the results reveals that the change in the polarizability of a X-H bond upon deuteration decreases as the electronegativity of X increases. Our investigation also reveals that the molecular polarizability isotope effect presents an additive character. Therefore, it can be computed by counting the number of deuterated bonds in the molecule.

15.
J Chem Phys ; 145(22): 224103, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27984884

RESUMO

The working equations for the calculation of analytic second energy derivatives in the framework of auxiliary density functional theory (ADFT) are presented. The needed perturbations are calculated with auxiliary density perturbation theory (ADPT) which is extended to perturbation dependent basis and auxiliary functions sets. The obtained ADPT equation systems are solved with the Eirola-Nevanlinna algorithm. The newly developed analytic second ADFT energy derivative approach was implemented in deMon2k and validated with respect to the corresponding finite difference approach by calculating the harmonic frequencies of small molecules. Good agreement between these two methodologies is found. To analyze the scaling of the new analytic second ADFT energy derivatives with respect to the number of processors in parallel runs, the harmonic frequencies of the carbon fullerene C240 are calculated with varying numbers of processors. Fair scaling up to 720 processors was found. As showcase applications, symmetry unrestricted optimization and frequency analyses of icosahedral carbon fullerenes with up to 960 atoms are presented.

16.
J Phys Chem A ; 120(45): 9101-9108, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27797503

RESUMO

Here analytical Fukui functions based on density functional theory are applied to investigate the redox reactivity of pristine and defected graphene lattices. A carbon H-terminated graphene structure (with 96 carbon atoms) and a graphene defected surface with Stone-Wales rearrangement and double vacancy defects are used as models. Pristine sp2-hybridized, hexagonal arranged carbon atoms exhibit a symmetric reactivity. In contrast, common carbon atoms at reconstructed polygons in Stone-Wales and double vacancy graphene display large reactivity variations. The improved reactivity and the regioselectivity at defected graphene is correlated to structural changes that caused carbon-carbon bond length variations at defected zones.

17.
Eur Phys J E Soft Matter ; 39(1): 4, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26802012

RESUMO

Motivated by the prevailing approach to diffusion coupling phenomena which considers point-like diffusing sources, we derived an analogous expression for the concentration rate of change of diffusively coupled extended containers. The proposed equation, together with expressions based on solutions to the diffusion equation, is intended to be applied to the numerical solution of systems exclusively composed of ordinary differential equations, however is able to account for effects due the finite size of the coupled sources.


Assuntos
Modelos Teóricos , Difusão
18.
J Chem Phys ; 141(11): 114103, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25240341

RESUMO

We recently extended the electron propagator theory to any type of quantum species based in the framework of the Any-Particle Molecular Orbital (APMO) approach [J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)]. The generalized any particle molecular orbital propagator theory (APMO/PT) was implemented in its quasiparticle second order version in the LOWDIN code and was applied to calculate nuclear quantum effects in electron binding energies and proton binding energies in molecular systems [M. Díaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)]. In this work, we present the derivation of third order quasiparticle APMO/PT methods and we apply them to calculate positron binding energies (PBEs) of atoms and molecules. We calculated the PBEs of anions and some diatomic molecules using the second order, third order, and renormalized third order quasiparticle APMO/PT approaches and compared our results with those previously calculated employing configuration interaction (CI), explicitly correlated and quantum Montecarlo methodologies. We found that renormalized APMO/PT methods can achieve accuracies of ~0.35 eV for anionic systems, compared to Full-CI results, and provide a quantitative description of positron binding to anionic and highly polar species. Third order APMO/PT approaches display considerable potential to study positron binding to large molecules because of the fifth power scaling with respect to the number of basis sets. In this regard, we present additional PBE calculations of some small polar organic molecules, amino acids and DNA nucleobases. We complement our numerical assessment with formal and numerical analyses of the treatment of electron-positron correlation within the quasiparticle propagator approach.

19.
J Chem Theory Comput ; 10(6): 2363-70, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26580756

RESUMO

Through the use of symbolic algebra, implemented in a program, the algebraic expression of the elements of the self-energy matrix for the electron propagator to different orders were obtained. In addition, a module for the software package Lowdin was automatically generated. Second- and third-order electron propagator results have been calculated to test the correct operation of the program. It was found that the Fortran 90 modules obtained automatically with our algorithm succeeded in calculating ionization energies with the second- and third-order electron propagator in the diagonal approximation. The strategy for the development of this symbolic algebra program is described in detail. This represents a solid starting point for the automatic derivation and implementation of higher-order electron propagator methods.

20.
J Chem Phys ; 138(19): 194108, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23697410

RESUMO

We have recently extended the electron propagator theory to the treatment of any type of particle using an Any-Particle Molecular Orbital (APMO) wavefunction as reference state. This approach, called APMO/PT, has been implemented in the LOWDIN code to calculate correlated binding energies, for any type of particle in molecular systems. In this work, we present the application of the APMO/PT approach to study proton detachment processes. We employed this method to calculate proton binding energies and proton affinities for a set of inorganic and organic molecules. Our results reveal that the second-order proton propagator (APMO/PP2) quantitatively reproduces experimental trends with an average deviation of less than 0.41 eV. We also estimated proton affinities with an average deviation of 0.14 eV and the proton hydration free energy using APMO/PP2 with a resulting value of -270.2 kcal/mol, in agreement with other results reported in the literature. Results presented in this work suggest that the APMO/PP2 approach is a promising tool for studying proton acid/base properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...