Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ecol Evol ; 14(5): e11343, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38746548

RESUMO

Urbanization modifies ecosystem conditions and evolutionary processes. This includes air pollution, mostly as tropospheric ozone (O3), which contributes to the decline of urban and peri-urban forests. A notable case are fir (Abies religiosa) forests in the peripheral mountains southwest of Mexico City, which have been severely affected by O3 pollution since the 1970s. Interestingly, some young individuals exhibiting minimal O3-related damage have been observed within a zone of significant O3 exposure. Using this setting as a natural experiment, we compared asymptomatic and symptomatic individuals of similar age (≤15 years old; n = 10) using histologic, metabolomic, and transcriptomic approaches. Plants were sampled during days of high (170 ppb) and moderate (87 ppb) O3 concentration. Given that there have been reforestation efforts in the region, with plants from different source populations, we first confirmed that all analyzed individuals clustered within the local genetic group when compared to a species-wide panel (Admixture analysis with ~1.5K SNPs). We observed thicker epidermis and more collapsed cells in the palisade parenchyma of needles from symptomatic individuals than from their asymptomatic counterparts, with differences increasing with needle age. Furthermore, symptomatic individuals exhibited lower concentrations of various terpenes (ß-pinene, ß-caryophylene oxide, α-caryophylene, and ß-α-cubebene) than asymptomatic trees, as evidenced through GC-MS. Finally, transcriptomic analyses revealed differential expression for 13 genes related to carbohydrate metabolism, plant defense, and gene regulation. Our results indicate a rapid and contrasting phenotypic response among trees, likely influenced by standing genetic variation and/or plastic mechanisms. They open the door to future evolutionary studies for understanding how O3 tolerance develops in urban environments, and how this knowledge could contribute to forest restoration.


La urbanización altera tanto las condiciones del ecosistema como los procesos evolutivos, siendo la contaminación del aire, principalmente el ozono troposférico (O3), un factor que contribuye al declive de los bosques urbanos y periurbanos. Un ejemplo destacado son los bosques de oyamel (Abies religiosa) en las montañas periféricas al suroeste de la Ciudad de México, que han sufrido graves afectaciones por la contaminación de O3 desde la década de 1970. Resulta curioso observar que algunos individuos jóvenes presentan un daño mínimo relacionado con el O3 dentro de zonas con una exposición significativa a este contaminante. Aprovechando este entorno como un experimento natural, hemos comparado individuos asintomáticos y sintomáticos de edad similar (≤15 años; n = 10) mediante enfoques histológicos, metabolómicos y transcriptómicos. Las muestras de plantas se recolectaron durante días con concentraciones altas (170 ppb) y moderadas (87 ppb) de O3. Dado que se han llevado a cabo esfuerzos de reforestación en la región con plantas de diferentes poblaciones, primero confirmamos que todos los individuos analizados se organizaron dentro del grupo genético local en comparación con un amplio panel poblacional de esta misma especie (Análisis de Admixture con ~1.5 K SNPs). Observamos una epidermis más gruesa y más células colapsadas en el parénquima en empalizada de las agujas de los individuos sintomáticos que de sus contrapartes asintomáticas, y estas diferencias aumentaban con la edad de la aguja. Además, los individuos sintomáticos exhibieron concentraciones más bajas de varios terpenos (ß­pineno, óxido de ß­cariofileno, α­cariofileno y ß­α­cubebeno) que los árboles asintomáticos, según se evidenció mediante GC­MS. Por último, los análisis transcriptómicos revelaron una expresión diferencial para trece genes relacionados con el metabolismo de carbohidratos, la defensa de plantas y la regulación génica. Nuestros resultados indican una respuesta fenotípica rápida y contrastante entre los árboles, probablemente influenciada por la variación genética presente y/o mecanismos plásticos. Estos hallazgos abren la puerta a futuros estudios evolutivos para comprender cómo se desarrolla la tolerancia al O3 en entornos urbanos y cómo este conocimiento podría contribuir a la restauración forestal.

2.
J Insect Physiol ; 154: 104633, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38554814

RESUMO

In many katydids, the male feeds his mate with a large gelatinous spermatophore. While providing large spermatophores can increase female fecundity and lifespan, it may also decrease their sexual receptivity, benefiting male fitness. Allocating resources to these edible gifts may entail a lower apportionment of them to other functions, generating a trade-off between somatic and reproductive functions. Despite their effect on male and female fitness, little is known of the compounds associated with katydid spermatophores. Our study found 177 different putative proteins in the spermatophore of Conocephalus ictus, with no correlation between male body size with spermatophore mass, number, concentration and mass of proteins. However, we did observe a negative relationship between male forewing length and protein concentration, and a negative relationship between the mass of the spermatophore transferred to the females and their body size, suggesting a resource allocation trade-off in males, but also strategic transference of resources based on female quality.


Assuntos
Ortópteros , Feminino , Masculino , Animais , Reprodução , Espermatogônias , Tamanho Corporal , Longevidade , Comportamento Sexual Animal
3.
Plants (Basel) ; 13(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38202439

RESUMO

When colonizing new ranges, plant populations may benefit from the absence of the checks imposed by the enemies, herbivores, and pathogens that regulated their numbers in their original range. Therefore, rates of plant damage or infestation by natural enemies are expected to be lower in the new range. Exposing both non-native and native plant populations in the native range, where native herbivores are present, can be used to test whether resistance mechanisms have diverged between populations. Datura stramonium is native to the Americas but widely distributed in Spain, where populations show lower herbivore damage than populations in the native range. We established experiments in two localities in the native range (Mexico), exposing two native and two non-native D. stramonium populations to natural herbivores. Plant performance differed between the localities, as did the abundance of the main specialist herbivore, Lema daturaphila. In Teotihuacán, where L. daturaphila is common, native plants had significantly more adult beetles and herbivore damage than non-native plants. The degree of infestation by the specialist seed predator Trichobaris soror differed among populations and between sites, but the native Ticumán population always had the lowest level of infestation. The Ticumán population also had the highest concentration of the alkaloid scopolamine. Scopolamine was negatively related to the number of eggs deposited by L. daturaphila in Teotihuacán. There was among-family variation in herbivore damage (resistance), alkaloid content (scopolamine), and infestation by L. daturaphila and T. soror, indicating genetic variation and potential for further evolution. Although native and non-native D. stramonium populations have not yet diverged in plant resistance/constitutive defense, the differences between ranges (and the two experimental sites) in the type and abundance of herbivores suggest that further research is needed on the role of resource availability and adaptive plasticity, specialized metabolites (induced, constitutive), and the relationship between genealogical origin and plant defense in both ranges.

4.
Toxins (Basel) ; 15(7)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37505739

RESUMO

Aluminosilicates are adsorbents able to bind mycotoxins, and their chemical modification increases their affinity to adsorb low-polarity mycotoxins. To further investigate if the inclusion of salts in bentonite modifies its adsorptive capacity, we studied T-2 toxin adsorption in natural bentonite (NB) and when modified with quaternary ammonium salts differing in polarity and chain length: myristyl trimethyl ammonium bromide (B14), cetyl trimethyl ammonium bromide (B16) and benzyl dimethyl stearyl ammonium chloride (B18). The results showed that quaternary salts made bentonite: displace monovalent (Na+1, K+1) and divalent (Mg+2, Ca+2) ions; reduce its porosity; change its compaction and structure, becoming more crystalline and ordered; and modify the charge balance of sheets. T-2 adsorption was higher in all modified materials compared to NB (p ≤ 0.0001), and B16 (42.96%) better adsorbed T-2 compared to B18 (35.80%; p = 0.0066). B14 (38.40%) showed no differences compared to B16 and B18 (p > 0.05). We described the T-2 adsorption mechanism in B16, in which hydrogen bond interactions, Van der Waals forces and the replacement of the salt by T-2 were found. Our results showed that interaction types due to the inclusion in B16 might be more important than the hydrocarbon chain length to improve the adsorptive capacity of bentonite.


Assuntos
Toxina T-2 , Poluentes Químicos da Água , Bentonita/química , Adsorção , Sais , Cátions , Poluentes Químicos da Água/química
5.
Toxins (Basel) ; 15(6)2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37368659

RESUMO

Zearalenone (ZEN) is a non-steroidal mycoestrogen produced by the Fusarium genus. ZEN and its metabolites compete with 17-beta estradiol for cytosolic estrogen receptors, causing reproductive alterations in vertebrates. ZEN has also been associated with toxic and genotoxic effects, as well as an increased risk for endometrial adenocarcinomas or hyperplasia, breast cancer, and oxidative damage, although the underlying mechanisms remain unclear. Previous studies have monitored cellular processes through levels of transcripts associated with Phase I Xenobiotic Metabolism (Cyp6g1 and Cyp6a2), oxidative stress (hsp60 and hsp70), apoptosis (hid, grim, and reaper), and DNA damage genes (Dmp53). In this study, we evaluated the survival and genotoxicity of ZEN, as well as its effects on emergence rate and fecundity in Drosophila melanogaster. Additionally, we determined levels of reactive oxygen species (ROS) using the D. melanogaster flare and Oregon R(R)-flare strains, which differ in levels of Cyp450 gene expression. Our results showed that ZEN toxicity did not increase mortality by more than 30%. We tested three ZEN concentrations (100, 200, and 400 µM) and found that none of the concentrations were genotoxic but were cytotoxic. Taking into account that it has previously been demonstrated that ZEN administration increased hsp60 expression levels and apoptosis gene transcripts in both strains, the data agree with an increase in ROS and development and fecundity alterations. Since Drosophila lacks homologous genes for mammalian estrogen receptors alpha and beta, the effects of this mycotoxin can be explained by a mechanism different from estrogenic activity.


Assuntos
Zearalenona , Animais , Zearalenona/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Dano ao DNA , Fertilidade , Mamíferos/metabolismo
6.
Microorganisms ; 11(4)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37110400

RESUMO

There is an expanding market for beer of different flavors. This study aimed to prepare a craft Belgian-style pale ale with a non-Saccharomyces yeast. Pichia kudriavzevii 4A was used as a sole starter culture, and malted barley as the only substrate. The ingredients and brewing process were carefully monitored to ensure the quality and innocuousness of the beverage. During fermentation, the yeast consumed 89.7% of total sugars and produced 13.8% v/v of ethanol. The product was fermented and then aged for 8 days, adjusted to 5% v/v alcohol, and analyzed. There were no traces of mycotoxins, lead, arsenic, methanol, or microbiological contamination that would compromise consumer health. According to the physicochemical analysis, the final ethanol concentration (5.2% v/v) and other characteristics complied with national and international guidelines. The ethyl acetate and isoamyl alcohol present are known to confer sweet and fruity flavors. The sensory test defined the beverage as refreshing and as having an apple and pear flavor, a banana aroma, and a good level of bitterness. The judges preferred it over a commercial reference sample of Belgian-style pale ale made from S. cerevisiae. Hence, P. kudriavzevii 4A has the potential for use in the beer industry.

7.
Molecules ; 28(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903263

RESUMO

Ochratoxin A (OTA) is considered one of the main mycotoxins responsible for health problems and considerable economic losses in the feed industry. The aim was to study OTA's detoxifying potential of commercial protease enzymes: (i) Ananas comosus bromelain cysteine-protease, (ii) bovine trypsin serine-protease and (iii) Bacillus subtilis neutral metalloendopeptidase. In silico studies were performed with reference ligands and T-2 toxin as control, and in vitro experiments. In silico study results showed that tested toxins interacted near the catalytic triad, similar to how the reference ligands behave in all tested proteases. Likewise, based on the proximity of the amino acids in the most stable poses, the chemical reaction mechanisms for the transformation of OTA were proposed. In vitro experiments showed that while bromelain reduced OTA's concentration in 7.64% at pH 4.6; trypsin at 10.69% and the neutral metalloendopeptidase in 8.2%, 14.44%, 45.26% at pH 4.6, 5 and 7, respectively (p < 0.05). The less harmful α-ochratoxin was confirmed with trypsin and the metalloendopeptidase. This study is the first attempt to demonstrate that: (i) bromelain and trypsin can hydrolyse OTA in acidic pH conditions with low efficiency and (ii) the metalloendopeptidase was an effective OTA bio-detoxifier. This study confirmed α-ochratoxin as a final product of the enzymatic reactions in real-time practical information on OTA degradation rate, since in vitro experiments simulated the time that food spends in poultry intestines, as well as their natural pH and temperature conditions.


Assuntos
Micotoxinas , Ocratoxinas , Animais , Bovinos , Ocratoxinas/análise , Bromelaínas , Simulação de Acoplamento Molecular , Tripsina , Ração Animal/análise , Metaloendopeptidases
8.
Physiol Plant ; 175(1): e13848, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36628548

RESUMO

During fern spore germination, lipid hydrolysis primarily provides the energy to activate their metabolism. In this research, fatty acids (linoleic, oleic, palmitic and stearic) were quantified in the spores exposed or not to priming (hydration-dehydration treatments). Five fern species were investigated, two from xerophilous shrubland and three from a cloud forest. We hypothesised that during the priming hydration phase, the fatty acids profile would change in concentration, depending on the spore type (non-chlorophyllous and crypto-chlorophyllous). The fatty acid concentration was determined by gas chromatograph-mass spectrometer. Chlorophyll in spores was vizualised by epifluorescence microscopy and quantified by high-resolution liquid chromatography with a DAD-UV/Vis detector. Considering all five species and all the treatments, the oleic acid was the most catabolised. After priming, we identified two patterns in the fatty acid metabolism: (1) in non-chlorophyllous species, oleic, palmitic, and linoleic acids were catabolised during imbibition and (2) in crypto-chlorophyllous species, these fatty acids increased in concentration. These patterns suggest that crypto-chlorophyllous spores with homoiochlorophylly (chlorophyll retained after drying) might not require the assembly of new photosynthetic apparatus during dark imbibition. Thus, these spores might require less energy from pre-existing lipids and less fatty acids as 'building blocks' for cell membranes than non-chlorophyllous spores, which require de novo synthesis and structuring of the photosynthetic apparatus.


Assuntos
Ácidos Graxos , Gleiquênias , Ácidos Graxos/metabolismo , Gleiquênias/metabolismo , Esporos/fisiologia , Metabolismo dos Lipídeos , Ácido Oleico/metabolismo , Ácidos Esteáricos/metabolismo , Ácido Palmítico/metabolismo
9.
Plants (Basel) ; 11(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35567143

RESUMO

Temperature is the main factor that impacts germination and therefore the success of annual crops, such as chia (Salvia hispanica L.), whose seeds are known for their high nutritional value related to its oil. The effect of temperature on germination is related to cardinal-temperature concepts that describe the range of temperature over which seeds of a particular species can germinate. Therefore, in this study, in addition to calculated germinative parameters such as total germination and germination rate of S. hispanica seeds, the effectiveness of non-linear models for estimating the cardinal temperatures of chia seeds was also determined. We observed that germination of S. hispanica occurred in cold to moderate-high temperatures (10-35 °C), having an optimal range between 25 and 35 °C, with the highest GR and t50 at 30 °C. Temperatures higher than 35 °C significantly reduced germination. Output parameters of the different non-linear models showed that the response of chia germination to temperature was best explained by beta models (B). Cardinal temperatures calculated by the B1 model for chia germination were: 2.52 ± 6.82 °C for the base, 30.45 ± 0.32 °C for the optimum, and 48.58 ± 2.93 °C for the ceiling temperature.

10.
Plants (Basel) ; 12(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36616279

RESUMO

Cedrela odorata is a native tree of economic importance, as its wood is highly demanded in the international market. In this work, the current and future distributions of C. odorata in Mexico under climate change scenarios were analyzed according to their optimal temperature ranges for seed germination. For the present distribution, 256 localities of the species' presence were obtained from the Global Biodiversity Information Facility (GBIF) database and modelled with MaxEnt. For the potential distribution, the National Center for Atmospheric Research model (CCSM4) was used under conservative and drastic scenarios (RCP2.6 and RCP8.5 Watts/m2, respectively) for the intermediate future (2050) and far future (2070). Potential distribution models were built from occurrence data within the optimum germination temperature range of the species. The potential distribution expanded by 5 and 7.8% in the intermediate and far future, respectively, compared with the current distribution. With the increase in temperature, adequate environmental conditions for the species distribution should be met in the central Mexican state of Guanajuato. The states of Chihuahua, Mexico, Morelos, Guerrero, and Durango presented a negative trend in potential distribution. Additionally, in the far future, the state of Chihuahua it is likely to not have adequate conditions for the presence of the species. For the prediction of the models, the precipitation variable during the driest month presented the greatest contribution. When the humidity is not limiting, the thermal climatic variables are the most important ones. Models based on its thermal niche for seed germination allowed for the identification of areas where temperature will positively affect seed germination, which will help maximize the establishment of plant populations and adaptation to different climate change scenarios.

11.
Plants (Basel) ; 10(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34834741

RESUMO

Swietenia macrophylla is an economically important tree species propagated by seeds that lose their viability in a short time, making seed germination a key stage for the species recruitment. The objective of this study was to determine the cardinal temperatures and thermal time for seed germination of S. macrophylla; and its potential distribution under different climate change scenarios. Seeds were placed in germination chambers at constant temperatures from 5 to 45 °C and their thermal responses modelled using a thermal time approach. In addition, the potential biogeographic distribution was projected according to the Community Climate System Model version 4 (CCSM4). Germination rate reached its maximum at 37.3 ± 1.3 °C (To); seed germination decreased to near zero at 52.7 ± 2.2 °C (ceiling temperature, Tc) and at 12.8 ± 2.4 °C (base temperature, Tb). The suboptimal thermal time θ150 needed for 50% germination was ca. 190 °Cd, which in the current scenario is accumulated in 20 days. The CCSM4 model estimates an increase of the potential distribution of the species of 12.3 to 18.3% compared to the current scenario. The temperature had an important effect on the physiological processes of the seeds. With the increase in temperature, the thermal needs for germination are completed in less time, so the species will not be affected in its distribution. Although the distribution of the species may not be affected, it is crucial to generate sustainable management strategies to ensure its long-term conservation.

12.
PeerJ ; 8: e9898, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32999763

RESUMO

BACKGROUND: Mexico is one of the most floristically rich countries in the world. Despite significant contributions made on the understanding of its unique flora, the knowledge on its diversity, geographic distribution and human uses, is still largely fragmented. Unfortunately, deforestation is heavily impacting this country and native tree species are under threat. The loss of trees has a direct impact on vital ecosystem services, affecting the natural capital of Mexico and people's livelihoods. Given the importance of trees in Mexico for many aspects of human well-being, it is critical to have a more complete understanding of their diversity, distribution, traditional uses and conservation status. We aimed to produce the most comprehensive database and catalogue on native trees of Mexico by filling those gaps, to support their in situ and ex situ conservation, promote their sustainable use, and inform reforestation and livelihoods programmes. METHODS: A database with all the tree species reported for Mexico was prepared by compiling information from herbaria and reviewing the available floras. Species names were reconciled and various specialised sources were used to extract additional species information, i.e. endemic status, threat status, availability in seed collections, reports on plant uses and conservation actions currently in place. With this information, a comprehensive catalogue of native trees from Mexico was redacted. Available georeferenced records were used to map each species distribution and perform spatial analyses to identify gaps of information and priority areas for their conservation and exploration. RESULTS: Mexico has at least 2,885 native tree species, belonging to 612 genera and 128 families. Fabaceae is the most represented family and Quercus the most represented genus. Approximately 44% of tree species are endemic to the country. The southern part of the country showed the highest values of species richness. Six hundred and seventy-four species have at least one documented human use. In terms of conservation assessment, ca. 33% of species have been assessed by either the IUCN Red List (919) or the National protection catalogue "NORMA Oficial Mexicana NOM-059" (29) or both (45). Additionally, 98 species have been included in the CITES listing for protection. In terms of existing conservation efforts, 19% of species have ex situ protection in seed banks, while protected areas overlap with all the identified peaks of species richness, except for those in the states of Veracruz and Chiapas. This work constitutes a key milestone for the knowledge, management, and conservation of the Mexican native trees. The two areas with high density of tree species identified in Veracruz and Chiapas represent two priority areas for tree conservation in Mexico, where integrated in situ and ex situ conservation efforts should be focused.

13.
Evolution ; 74(12): 2629-2643, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32935854

RESUMO

Because most species are collections of genetically variable populations distributed to habitats differing in their abiotic/biotic environmental factors and community composition, the pattern and strength of natural selection imposed by species on each other's traits are also expected to be highly spatially variable. Here, we used genomic and quantitative genetic approaches to understand how spatially variable selection operates on the genetic basis of plant defenses to herbivores. To this end, an F2 progeny was generated by crossing Datura stramonium (Solanaceae) parents from two populations differing in their level of chemical defense. This F2 progeny was reciprocally transplanted into the parental plants' habitats and by measuring the identity by descent (IBD) relationship of each F2 plant to each parent, we were able to elucidate how spatially variable selection imposed by herbivores operated on the genetic background (IBD) of resistance to herbivory, promoting local adaptation. The results highlight that plants possessing the highest total alkaloid concentrations (sum of all alkaloid classes) were not the most well-defended or fit. Instead, specific alkaloids and their linked loci/alleles were favored by selection imposed by different herbivores. This has led to population differentiation in plant defenses and thus, to local adaptation driven by plant-herbivore interactions.


Assuntos
Adaptação Biológica/genética , Alcaloides/farmacologia , Datura stramonium/genética , Herbivoria/efeitos dos fármacos , Defesa das Plantas contra Herbivoria/genética , Alcaloides/análise , Alcaloides/genética , Animais , Besouros , Datura stramonium/química , Ecossistema , Aptidão Genética , México , Seleção Genética
14.
Nat Prod Res ; 34(13): 1942-1946, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30724587

RESUMO

The effect of exogenous application of jasmonic acid (JA) on the concentration of main terpenes and density of glandular trichomes was investigated in the Mexican oregano, propagated from seeds from 3 localities. JA 1 mM was applied locally and to the whole plant. JA locally applied increased the number of trichomes, with a mean of 20 trichomes more with respect to the controls in plants from Tecomavaca and Zapotitlán Salinas, and significantly increased the thymol concentration by 185% systemically and 255% locally, compared to the control. JA applied to the whole plant decreased the number of trichomes and increased the concentration of caryophyllene from 0.79 to 1.7 mg g-1, and α-caryophyllene from 0.3 to 0.8 mg g-1 in plants from San Rafael with reference to water control. The results suggest a plasticity of morphologic and phytochemical responses, and a potential use of JA to improve phenolic monoterpenes and sesquiterpenes production.


Assuntos
Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Terpenos/análise , Tricomas/efeitos dos fármacos , Verbenaceae/efeitos dos fármacos , Lippia , México , Sesquiterpenos Monocíclicos , Monoterpenos/análise , Origanum/efeitos dos fármacos , Sesquiterpenos Policíclicos/análise , Timol/análise
15.
PLoS One ; 13(4): e0196428, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29698442

RESUMO

The corncob is an agricultural waste generated in huge quantities during corn processing. In this paper, we tested the capacity of corncob particles for water purification by removing the azo dye Direct Yellow 27 (DY27) via biosorption. The biosorption process was investigated in terms of the kinetics, equilibria, and thermodynamics. Batch biosorption studies showed that the biosorption performance has strong inverse correlations to the solution pH and the corncob particle size, and it increases quickly with increasing contact time and initial dye concentration. The pseudo-second-order kinetic model provides the best fit to the experimental data, whereas the Redlich-Peterson isotherm model is most suitable for describing the observed equilibrium biosorption. The biosorption process is exothermic, spontaneous, and physisorption in character. Fourier transform infrared (FTIR) spectroscopy and confocal scanning laser microscopy (CSLM) studies suggest that lignocellulose and proteins play key roles in the biosorption of DY27 from aqueous solutions by corncob. Furthermore, after biosorption onto the corncob, the dye can be effectively desorbed using 0.1 M NaOH solution. Therefore, the corncob can be used as a promising biosorbent to remediate DY27-contaminated water and wastewater.


Assuntos
Compostos Azo/química , Corantes/química , Naftalenos/química , Purificação da Água/métodos , Zea mays/química , Adsorção , Compostos Azo/isolamento & purificação , Corantes/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Microscopia Confocal , Microscopia Eletrônica de Varredura , Modelos Teóricos , Naftalenos/isolamento & purificação , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Zea mays/metabolismo
16.
Molecules ; 22(12)2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29206158

RESUMO

The candidiasis caused by C. albicans is a public health problem. The abuse of antifungals has contributed to the development of resistance. B. morelensis has demonstrated antibacterial and antifungal activities. In this work the activity of the essential oil of B. morelensis was evaluated and for its two pure compounds with analysis of the different mechanisms of pathogenesis important for C. albicans. The essential oil was obtained by the hydro-distillation method and analyzed using GC-MS. The anti-Candida activity was compared between to essential oil, α-Pinene and γ-Terpinene. GC-MS of the essential oil demonstrated the presence of 13 compounds. The essential oil showed antifungal activity against four C. albicans strains. The most sensitive strain was C. albicans 14065 (MFC 2.0 mg/mL and MIC50 0.125 mg/mL) with α-Pinene and γ-Terpinene having MFCs of 4.0 and 16.0 mg/mL respectively. The essential oil inhibited the growth of the germ tube in 87.94% (8.0 mg/mL). Furthermore, it was observed that the essential oil diminishes the transcription of the gene INT1. This work provides evidence that confirms the anti-Candida activity of the B. morelensis essential oil and its effect on the growth of the germ tube and transcription of the gene INT1.


Assuntos
Antifúngicos/farmacologia , Bursera/química , Candida/efeitos dos fármacos , Monoterpenos/farmacologia , Esporos Fúngicos/efeitos dos fármacos , Antifúngicos/química , Antifúngicos/isolamento & purificação , Monoterpenos Bicíclicos , Candida/genética , Candida/crescimento & desenvolvimento , Candida/metabolismo , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Monoterpenos Cicloexânicos , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Expressão Gênica , Testes de Sensibilidade Microbiana , Monoterpenos/isolamento & purificação , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/farmacologia , Extratos Vegetais/química , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Óleos de Plantas/farmacologia , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo
17.
J Biotechnol ; 262: 67-74, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-28928028

RESUMO

A biomass production process including two stages, heterotrophy/photoinduction (TSHP), was developed to improve biomass and lutein production by the green microalgae Scenedesmus incrassatulus. To determine the effects of different nitrogen sources (yeast extract and urea) and temperature in the heterotrophic stage, experiments using shake flask cultures with glucose as the carbon source were carried out. The highest biomass productivity and specific pigment concentrations were reached using urea+vitamins (U+V) at 30°C. The first stage of the TSHP process was done in a 6L bioreactor, and the inductions in a 3L airlift photobioreactor. At the end of the heterotrophic stage, S. incrassatulus achieved the maximal biomass concentration, increasing from 7.22gL-1 to 17.98gL-1 with an increase in initial glucose concentration from 10.6gL-1 to 30.3gL-1. However, the higher initial glucose concentration resulted in a lower specific growth rate (µ) and lower cell yield (Yx/s), possibly due to substrate inhibition. After 24h of photoinduction, lutein content in S. incrassatulus biomass was 7 times higher than that obtained at the end of heterotrophic cultivation, and the lutein productivity was 1.6 times higher compared with autotrophic culture of this microalga. Hence, the two-stage heterotrophy/photoinduction culture is an effective strategy for high cell density and lutein production in S. incrassatulus.


Assuntos
Processos Heterotróficos , Luz , Luteína/biossíntese , Scenedesmus/crescimento & desenvolvimento , Scenedesmus/metabolismo , Scenedesmus/efeitos da radiação , Processos Autotróficos , Biomassa , Reatores Biológicos , Carbono/metabolismo , Meios de Cultura/química , Fermentação , Glucose/metabolismo , Cinética , Nitrogênio/metabolismo , Fotobiorreatores , Temperatura , Fatores de Tempo , Vitaminas
18.
PLoS One ; 11(12): e0167494, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27907122

RESUMO

This study investigated the aerobic biodegradation of methyl tertiary-butyl ether (MTBE) by a microbial consortium in a continuous up-flow packed-bed biofilm reactor using tezontle stone particles as a supporting material for the biofilm. Although MTBE is toxic for microbial communities, the microbial consortium used here was able to resist MTBE loading rates up to 128.3 mg L-1 h-1, with removal efficiencies of MTBE and chemical oxygen demand (COD) higher than 90%. A linear relationship was observed between the MTBE loading rate and the MTBE removal rate, as well as between the COD loading rate and the COD removal rate, within the interval of MTBE loading rates from 11.98 to 183.71 mg L-1 h-1. The metabolic intermediate tertiary butyl alcohol (TBA) was not detected in the effluent during all reactor runs, and the intermediate 2-hydroxy butyric acid (2-HIBA) was only detected at MTBE loading rates higher than 128.3 mg L-1 h-1. The results of toxicity bioassays with organisms from two different trophic levels revealed that the toxicity of the influent was significantly reduced after treatment in the packed-bed reactor. The packed-bed reactor system used in this study was highly effective for the continuous biodegradation of MTBE and is therefore a promising alternative for detoxifying MTBE-laden wastewater and groundwater.


Assuntos
Biodegradação Ambiental , Biofilmes , Reatores Biológicos , Éteres Metílicos/metabolismo , Consórcios Microbianos , Bioensaio , Biomassa , Éteres Metílicos/química
19.
Electron. j. biotechnol ; 19(5): 12-20, Sept. 2016. ilus
Artigo em Inglês | LILACS | ID: lil-797332

RESUMO

Background: Methyl tert-butyl ether (MTBE) is a pollutant that causes deleterious effects on human and environmental health. Certain microbial cultures have shown the ability to degrade MTBE, suggesting that a novel bacterial species capable of degrading MTBE could be recovered. The goal of this study was to isolate, identify and characterize the members of a bacterial consortium capable of degrading MTBE. Results: The IPN-120526 bacterial consortium was obtained through batch enrichment using MTBE as the sole carbon and energy source. The cultivable fraction of the consortium was identified; of the isolates, only Stenotrophomonas maltophilia IPN-TD and Sphingopyxis sp. IPN-TE were capable of degrading MTBE. To the best of our knowledge, this report is the first demonstrating that S. maltophilia and Sphingopyxis sp. are capable of degrading MTBE. The degradation kinetics of MTBE demonstrated that S. maltophilia IPN-TD had a significantly higher overall MTBE degradation efficiency and rate (48.39 ± 3.18% and 1.56 ± 0.12 mg L-1 h-1, respectively) than the IPN-120526 consortium (38.59 ± 2.17% and 1.25 ± 0.087 mg L-1 respectively). The kinetics of MTBE removal by both cultures fit first-order and pseudo-first-order reaction models. Conclusions: These findings suggest that S. maltophilia IPN-TD in axenic culture has considerable potential for the detoxification of MTBE-contaminated water.


Assuntos
Microbiologia do Solo , Stenotrophomonas maltophilia/isolamento & purificação , Stenotrophomonas maltophilia/metabolismo , Éteres Metílicos/metabolismo , Biodegradação Ambiental , Gasolina , Cinética , Reação em Cadeia da Polimerase , Poluição Ambiental , Consórcios Microbianos , Éteres Metílicos/análise
20.
PeerJ ; 4: e1898, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27114866

RESUMO

Plant resistance to herbivores involves physical and chemical plant traits that prevent or diminish damage by herbivores, and hence may promote coevolutionary arm-races between interacting species. Although Datura stramonium's concentration of tropane alkaloids is under selection by leaf beetles, it is not known whether chemical defense reduces seed predation by the specialist weevil, Trichobaris soror, and if it is evolving by natural selection. We measured infestation by T. soror as well as the concentration of the plants' two main tropane alkaloids in 278 D. stramonium plants belonging to 31 populations in central Mexico. We assessed whether the seed predator exerted preferences on the levels of both alkaloids and whether they affect plant fitness. Results show great variation across populations in the concentration of scopolamine and atropine in both leaves and seeds of plants of D. stramonium, as well as in the intensity of infestation and the proportion of infested fruits by T. soror. The concentration of scopolamine in seeds and leaves are negatively associated across populations. We found that scopolamine concentration increases plant fitness. Our major finding was the detection of a positive relationship between the population average concentrations of scopolamine with the selection differentials of scopolamine. Such spatial variation in the direction and intensity of selection on scopolamine may represent a coevolutionary selective mosaic. Our results support the view that variation in the concentration of scopolamine among-populations of D. stramonium in central Mexico is being driven, in part, by selection exerted by T. soror, pointing an adaptive role of tropane alkaloids in this plant species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...