Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Phylogenet Evol ; 145: 106723, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31891757

RESUMO

The high levels of Neotropical biodiversity are commonly associated with the intense Neogene-Quaternary geological events and climate dynamics. Here, we investigate the evolutionary history of two species of Neotropical closely related amphibians (R. horribilis and R. marina). We combine published data with new mitochondrial DNA sequences and multiple nuclear markers, including 12 microsatellites. The phylogenetic analyses showed support for grouping the samples in two main clades; R. horribilis (Central America and Mexico) and R. marina (South America east of the Andes). However, the phylogenetic inferences also show an evident mito-nuclear discordance. We use Approximate Bayesian Computation (ABC) to test the role of different events in the diversification between the two groups recovered. We found that both species were affected primarily by a recent Pleistocene divergence, which was similar to the divergence estimate revealed by the Isolation-with-Migration model, under persistent bidirectional gene flow through time. We provide the first evidence that R. horribilis is differentiated from the South American R. marina at the nuclear level supporting the taxonomic status of R. horribilis, which has been controversial for more than a century.


Assuntos
Bufo marinus/classificação , Animais , Teorema de Bayes , Evolução Biológica , Bufo marinus/genética , América Central , Citocromos b/química , Citocromos b/classificação , Citocromos b/genética , DNA Mitocondrial/genética , Fluxo Gênico , Variação Genética , Repetições de Microssatélites/genética , Filogenia , Filogeografia , Proteínas Ribossômicas/química , Proteínas Ribossômicas/classificação , Proteínas Ribossômicas/genética , América do Sul
3.
PLoS One ; 14(1): e0210890, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30682061

RESUMO

We explored the hypothesis that high ß-diversity of terrestrial vertebrates of Mexico is associated with a high environmental heterogeneity (HEH) and identify the drivers of ß-diversity at different spatial scales. We used distribution range maps of 2,513 species of amphibians, reptiles, mammals, and birds occurring in Mexico. We estimated ß-diversity for each taxon at four spatial scales (grid cells of 2°, 1°, 0.5° and 0.25°) using the multiplicative formula of Whittaker ßw. For each spatial scale, we derived 10 variables of environmental heterogeneity among cells based on raw data of temperature, precipitation, elevation, vegetation and soil. We applied conditional autoregressive models (CAR) to identify the drivers of ß-diversity for each taxon at each spatial scale. CARs increased in explanatory power from fine-to-coarse spatial scales in amphibians, reptiles and mammals. The heterogeneity in precipitation including both, coefficient of variation (CV) and range of values (ROV), resulted in the most important drivers of ß-diversity of amphibians; the heterogeneity in temperature (CV) and elevation (ROV) were the most important drivers of ß-diversity for reptiles; the heterogeneity in temperature (ROV) resulted in the most important driver in ß-diversity for mammals. For birds, CARs resulted significant at fine scales (grid cells of 0.5° and 0.25°), and the precipitation (ROV and CV), temperature (ROV), and vegetation (H) and soil (H) were heterogeneity variables retained in the model. We found support for the hypothesis of environmental heterogeneity (HEH) for terrestrial vertebrates at coarse scales (grid cell of 2°). Different variables of heterogeneity, mainly abiotic, were significant for each taxon, reflecting physiological differences among terrestrial vertebrate groups. Our study revealed the importance of mountain areas in the geographic patterns of ß-diversity of terrestrial vertebrates in Mexico. At a coarse scale, specific variables of heterogeneity can be used as a proxy of ß-diversity for amphibians and reptiles.


Assuntos
Biodiversidade , Ecossistema , Vertebrados , Altitude , Anfíbios , Animais , Aves , Clima , Geografia , Mamíferos , México , Modelos Biológicos , Répteis , Temperatura
4.
Sci Rep ; 8(1): 17622, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514908

RESUMO

Snake venoms represent an enriched system for investigating the evolutionary processes that lead to complex and dynamic trophic adaptations. It has long been hypothesized that natural selection may drive geographic variation in venom composition, yet previous studies have lacked the population genetic context to examine these patterns. We leverage range-wide sampling of Mojave Rattlesnakes (Crotalus scutulatus) and use a combination of venom, morphological, phylogenetic, population genetic, and environmental data to characterize the striking dichotomy of neurotoxic (Type A) and hemorrhagic (Type B) venoms throughout the range of this species. We find that three of the four previously identified major lineages within C. scutulatus possess a combination of Type A, Type B, and a 'mixed' Type A + B venom phenotypes, and that fixation of the two main venom phenotypes occurs on a more fine geographic scale than previously appreciated. We also find that Type A + B individuals occur in regions of inferred introgression, and that this mixed phenotype is comparatively rare. Our results support strong directional local selection leading to fixation of alternative venom phenotypes on a fine geographic scale, and are inconsistent with balancing selection to maintain both phenotypes within a single population. Our comparisons to biotic and abiotic factors further indicate that venom phenotype correlates with fang morphology and climatic variables. We hypothesize that links to fang morphology may be indicative of co-evolution of venom and other trophic adaptations, and that climatic variables may be linked to prey distributions and/or physiology, which in turn impose selection pressures on snake venoms.


Assuntos
Crotalus/anatomia & histologia , Crotalus/genética , Seleção Genética , Peçonhas/química , Peçonhas/genética , Adaptação Biológica , Animais , Crotalus/classificação , Exposição Ambiental , Genética Populacional , Filogeografia , Venenos/análise , Peçonhas/classificação
5.
Mol Phylogenet Evol ; 127: 669-681, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29902574

RESUMO

The Mojave rattlesnake (Crotalus scutulatus) inhabits deserts and arid grasslands of the western United States and Mexico. Despite considerable interest in its highly toxic venom and the recognition of two subspecies, no molecular studies have characterized range-wide genetic diversity and population structure or tested species limits within C. scutulatus. We used mitochondrial DNA and thousands of nuclear loci from double-digest restriction site associated DNA sequencing to infer population genetic structure throughout the range of C. scutulatus, and to evaluate divergence times and gene flow between populations. We find strong support for several divergent mitochondrial and nuclear clades of C. scutulatus, including splits coincident with two major phylogeographic barriers: the Continental Divide and the elevational increase associated with the Central Mexican Plateau. We apply Bayesian clustering, phylogenetic inference, and coalescent-based species delimitation to our nuclear genetic data to test hypotheses of population structure. We also performed demographic analyses to test hypotheses relating to population divergence and gene flow. Collectively, our results support the existence of four distinct lineages within C. scutulatus, and genetically defined populations do not correspond with currently recognized subspecies ranges. Finally, we use approximate Bayesian computation to test hypotheses of divergence among multiple rattlesnake species groups distributed across the Continental Divide, and find evidence for co-divergence at this boundary during the mid-Pleistocene.


Assuntos
Crotalus/genética , Fluxo Gênico , Variação Genética , Animais , Sequência de Bases , Teorema de Bayes , Núcleo Celular/genética , Crotalus/classificação , DNA Mitocondrial/genética , Ecossistema , Genética Populacional , México , Filogenia , Filogeografia , Fatores de Tempo , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...