Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Sci ; 9(2)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35202332

RESUMO

The close contact between people and their pets has generated the exchange of skin microbiota, accompanied by bacteria that present resistance to antibiotics. Staphylococcus spp., opportunistic pathogens present in the skin and mucosa of mammals, have had their importance recognized in human and veterinary medicine. The objectives of this study were to identify Staphylococcus spp. present in isolates from the nostrils of healthy humans, dogs and cats as well as to determine their phenotype of resistance to methicillin. Strain identification was performed by MALDI-TOF mass spectrometry and antimicrobial susceptibility was determined using a disk diffusion assay for 12 antibiotics. Sixty humans (veterinary and technicians), sixty dogs and sixty cats were sampled; of them, 61.6%, 56.6% and 46.6%, respectively, carried Staphylococcus spp. in their nostrils, and only two people carried two different species of Staphylococcus in the only anatomical site sampled. A methicillin-resistant phenotype was present in 48.7% of the humans, 26.5% of the dogs and 57.1% of the cats, and sampled. These results demonstrate the presence of Staphylococcus spp. strains resistant to methicillin in personnel who work in contact with animals, as well as in dogs and cats that entered the same hospital or veterinary clinic, which alerts us to the potential transfer of these strains to or between people, dogs and/or cats.

2.
PeerJ ; 10: e12695, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35190784

RESUMO

Obesity is a multifactorial nutritional disorder highly prevalent in dogs, observed in developed and developing countries. It is estimated that over 40% of the canine population suffers from obesity, which manifests in an increased risk of chronic osteoarticular, metabolic, and cardiovascular diseases. The intestinal microbiome of obese animals shows increases in the abundance of certain members capable of extracting energy from complex polysaccharides. The objective of this study was to compare the composition and predicted function of the intestinal microbiome of Chilean obese and normal weight adult dogs. Twenty clinically healthy dogs were classified according to their body condition score (BCS) as obese (n = 10) or normal weight (n = 10). DNA was extracted from stool samples, followed by next-generation sequencing of the 16S rRNA V3-V4 region and bioinformatics analysis targeting microbiome composition and function. Significant differences were observed between these groups at the phylum level, with anincrease in Firmicutes and a decrease in Bacteroidetes in obese dogs. Microbiome compositions of these animals correlated with their BCS, and obese dogs showed enrichment in pathways related to transport, chemotaxis, and flagellar assembly. These results highlight the differences in the gut microbiome between normal weight and obese dogs and prompt further research to improve animal health by modulating the gut microbiome.


Assuntos
Microbioma Gastrointestinal , Microbiota , Cães , Animais , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Fezes , Obesidade/veterinária
3.
Vet Sci ; 8(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34941818

RESUMO

The oral microbiome in dogs is a complex community. Under some circumstances, it contributes to periodontal disease, a prevalent inflammatory disease characterized by a complex interaction between oral microbes and the immune system. Porphyromonas and Tannerella spp. are usually dominant in this disease. How the oral microbiome community is altered in periodontal disease, especially sub-dominant microbial populations is unclear. Moreover, how microbiome functions are altered in this disease has not been studied. In this study, we compared the composition and the predicted functions of the microbiome of the cavity of healthy dogs to those with from periodontal disease. The microbiome of both groups clustered separately, indicating important differences. Periodontal disease resulted in a significant increase in Bacteroidetes and reductions in Actinobacteria and Proteobacteria. Porphyromonas abundance increased 2.7 times in periodontal disease, accompanied by increases in Bacteroides and Fusobacterium. It was predicted that aerobic respiratory processes are decreased in periodontal disease. Enrichment in fermentative processes and anaerobic glycolysis were suggestive of an anaerobic environment, also characterized by higher lipopolysaccharide biosynthesis. This study contributes to a better understanding of how periodontal disease modifies the oral microbiome and makes a prediction of the metabolic pathways that contribute to the inflammatory process observed in periodontal disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...