Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Phys ; 107(5): 54702, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20368988

RESUMO

We have demonstrated a postprocessed complementary metal oxide semiconductor (CMOS) integrated circuit (IC) capable of on-chip magnetic separation, i.e., removing via magnetic forces the nonspecifically bound magnetic beads from the detection area on the surface of the chip. Initially, 4.5 mum wide superparamagnetic beads sedimenting out of solution due to gravity were attracted to the detection area by a magnetic concentration force generated by flowing current through a conductor embedded in the IC. After sedimentation, the magnetic beads that did not bind strongly to the functionalized surface of the IC through a specific biochemical complex were removed by a magnetic separation force generated by flowing current through another conductor placed laterally to the detection area. As the spherical bead pivoted on the surface of the chip, the lateral magnetic force was further amplified by mechanical leveraging, and 50 mA of current flowing through the separation conductor placed 18 mum away from the bead resulted in 7.5 pN of tensile force on the biomolecular tether immobilizing the bead. This force proved high enough to break nonspecific interactions while leaving specific antibody-antigen bonds intact. A sandwich capture immunoassay on purified human immunoglobulin G showed strong correlation with a control enzyme linked immunosorbent assay and a detection limit of 10 ngml or 70 pM. The beads bound to the detection area after on-chip magnetic separation were detected optically. To implement a fully integrated molecular diagnostics platform, the on-chip magnetic separation functionality presented in this work can be readily combine with state-of-the art CMOS-based magnetic bead detection technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...