Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041215

RESUMO

Block copolymer membranes are an exciting class of materials used to separate small contaminants from water. Covalent cross-linking of the membrane matrix is one approach to alleviate stability issues, which limit their application nowadays. In the current work, membranes from amphiphilic block copolymers are manufactured and cross-linked using a UV-active radical initiator moiety.

2.
Vet Res ; 52(1): 112, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433500

RESUMO

A vaccine protecting against different Streptococcus suis serotypes is highly needed in porcine practice to improve animal welfare and reduce the use of antibiotics. We hypothesized that immunogens prominently recognized by convalescence sera but significantly less so by sera of susceptible piglets are putative protective antigens. Accordingly, we investigated immunogenicity and protective efficacy of a multicomponent vaccine including six main conserved immunogens, namely SSU0934, SSU1869, SSU0757, SSU1950, SSU1664 and SSU0187. Flow cytometry confirmed surface expression of all six immunogens in S. suis serotypes 2, 9 and 14. Although prime-booster vaccination after weaning resulted in significantly higher specific IgG levels against all six immunogens compared to the placebo-treated group, no significant differences between bacterial survival in blood from either vaccinated or control animals were recorded for serotype 2, 9 and 14 strains. Furthermore, vaccinated piglets were not protected against morbidity elicited through intranasal challenge with S. suis serotype 14. As ~50% of animals in both groups did not develop disease, we investigated putative other correlates of protection. Induction of reactive oxygen species (ROS) in blood granulocytes was not associated with vaccination but correlated with protection as all piglets with >5% ROS survived the challenge. Based on these findings we discuss that the main immunogens of S. suis might actually not be a priori good candidates for protective antigens. On the contrary, expression of immunogens that evoke antibodies that do not mediate killing of this pathogen might constitute an evolutionary advantage conserved in many different S. suis strains.


Assuntos
Imunogenicidade da Vacina , Infecções Estreptocócicas/veterinária , Vacinas Estreptocócicas/imunologia , Streptococcus suis/imunologia , Doenças dos Suínos/prevenção & controle , Animais , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/administração & dosagem , Sus scrofa , Suínos , Doenças dos Suínos/microbiologia , Resultado do Tratamento
3.
Microbiol Resour Announc ; 10(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446586

RESUMO

Streptococcus suis is an important pathogen of pigs that, as a zoonotic agent, can also cause severe disease in humans, including meningitis, endocarditis, and septicemia. We report complete and annotated genomes of S. suis strains 10, 13-00283-02, and 16085/3b, which represent the highly prevalent serotypes cps2, cps7, and cps9, respectively.

4.
Biochem Biophys Res Commun ; 345(3): 1264-72, 2006 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16712798

RESUMO

The mammalian sorting nexin (SNX) proteins are involved in the endocytosis and the sorting machinery of transmembrane proteins. Additionally to the family defining phox homology (PX) domain, SNX17 is the only member with a truncated FERM (4.1, ezrin, radixin, and moesin) domain and a unique C-terminal region (together designated as FC unit). By gel filtration and lipid overlay assays we show that SNX17 is a non-self-assembling and a PtdIns(3)P high class affinity protein. A SNX17 affinity to any other phosphoinositides was not detected. By yeast two-hybrid- and GST-trapping assays we identified KRIT1 (krev1 interaction trapped 1) as a new specific interaction partner of the FC unit of SNX17. KRIT1 binds SNX17 by its N-terminal region like the known interaction partner ICAP1alpha (integrin cytoplasmic domain-associated protein-1). The interaction was also detected in HEK 293 cells transiently expressing GFP-tagged KRIT1 and Xpress-tagged SNX17. KRIT1 mutations cause cerebral cavernous malformation (CCM1). Our finding suggests a SNX17 involvement in the indicated KRIT1 function in cell adhesion processes by integrin signaling.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfatidilinositol 3-Quinases/química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Transporte/química , Comunicação Celular , Cromatografia em Gel , Células Endoteliais/citologia , Glutationa/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Humanos , Integrinas/metabolismo , Proteína KRIT1 , Cinética , Fosfatidilinositóis/química , Estrutura Terciária de Proteína , Nexinas de Classificação , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte Vesicular
5.
J Mol Biol ; 347(4): 813-25, 2005 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15769472

RESUMO

SNX17 is a member of the sorting nexin family (SNX), a group of hydrophilic proteins whose common characteristic property is a phox homology (PX) domain. The PX domain directs SNXs to phosphatidylinositides containing membranes of the endosomal compartment, where the SNXs are involved in the sorting of transmembrane proteins. SNX17 is known to interact with P-selectin and the LDL receptor family. Here, we report that the PX domain of SNX17 specifically binds to phosphatidylinositol 3-phosphate-containing membranes. The functional part of SNX17 that binds P-selectin or Patched (PTCH) consists of a truncated FERM domain and a unique C terminus together (FC-unit). In a yeast two-hybrid analysis a putative recognition motif for the FC-unit was revealed within P-selectin as FxNaa(F/Y). When HepG2 cells overexpress P-selectin together with SNX17, SNX17 changes its distribution from early endosomes to lysobisphosphatidic acid-containing late endosomes. Furthermore, overexpressed SNX17 restrains P-selectin in the outer membrane of the late endosomal compartment, thus preventing the normal lysosomal accumulation of P-selectin. These results suggest that the PX domain is necessary for the intracellular localisation, while the FC-unit is required for cargo recognition. We hypothesise that the expression level of SNX17 may regulate the lysosomal degradation, at least for P-selectin, by suppressing its entry into the inner vesicles of the multi-vesicular bodies (MVBs).


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Selectina-P/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Linhagem Celular , Cricetinae , Endossomos/metabolismo , Expressão Gênica , Humanos , Dados de Sequência Molecular , Mutação/genética , Selectina-P/química , Selectina-P/genética , Fosfatos de Fosfatidilinositol/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Especificidade por Substrato , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...