Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Microbiol ; 23(1): 36-50, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32686279

RESUMO

Phytophagous stink bugs typically harbor nutritional symbiotic bacteria in their midgut, to integrate their unbalanced diet. In the Pentatomidae, most symbionts are affiliated to the genus Pantoea, and are polyphyletic. This suggests a scenario of an ancestral establishment of symbiosis, followed by multiple symbiont replacement events by akin environmental bacteria in different host lineages. In this study, a novel Pantoeaspecies ('CandidatusPantoea persica') was characterized from the gut of the pentatomid Acrosternum arabicum, and shown to be highly abundant in a specific portion of the gut and necessary for the host development. The genome of the symbiont (2.9 Mb), while presenting putative host-supportive metabolic pathways, including those for amino acids and vitamin synthesis, showed a high level of pseudogenization, indicating ongoing genome reduction. Comparative analyses with other free-living and symbiotic Pantoea highlighted a convergent pattern of genome reduction in symbionts of pentatomids, putatively following the typical phases modelized in obligate nutritional symbionts of insects. Additionally, this system has distinctive traits, as hosts are closely related, and symbionts originated multiple independent times from closely related free-living bacteria, displaying convergent and independent conspicuous genome reduction. Due to such peculiarities, this may become an ideal model to study genome evolutionary processes in insect symbionts.


Assuntos
Genoma Bacteriano , Heterópteros/microbiologia , Pantoea/genética , Simbiose , Animais , Evolução Molecular , Heterópteros/fisiologia , Redes e Vias Metabólicas , Pantoea/classificação , Pantoea/isolamento & purificação , Pantoea/fisiologia , Filogenia
2.
Genome Biol Evol ; 10(4): 1120-1126, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29659807

RESUMO

"Candidatus Fokinia solitaria" is an obligate intracellular endosymbiont of a unicellular eukaryote, a ciliate of the genus Paramecium. Here, we present the genome sequence of this bacterium and subsequent analysis. Phylogenomic analysis confirmed the previously reported positioning of the symbiont within the "Candidatus Midichloriaceae" family (order Rickettsiales), as well as its high sequence divergence from other members of the family, indicative of fast sequence evolution. Consistently with this high evolutionary rate, a comparative genomic analysis revealed that the genome of this symbiont is the smallest of the Rickettsiales to date. The reduced genome does not present flagellar genes, nor the pathway for the biosynthesis of lipopolysaccharides (present in all the other so far sequenced members of the family "Candidatus Midichloriaceae") or genes for the Krebs cycle (present, although not always complete, in Rickettsiales). These results indicate an evolutionary trend toward a stronger dependence on the host, in comparison with other members of the family. Two alternative scenarios are compatible with our results; "Candidatus Fokinia solitaria" could be either a recently evolved, vertically transmitted mutualist, or a parasite with a high host-specificity.


Assuntos
Evolução Molecular , Paramecium/genética , Filogenia , Rickettsieae/genética , Animais , Mapeamento Cromossômico , Ciclo do Ácido Cítrico/genética , Citoplasma/genética , Genoma Bacteriano/genética , Paramecium/microbiologia , RNA Ribossômico 16S/genética , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...